
Problems with solutions in the Analysis of Algorithms

c© Minko Markov
Draft date April 7, 2010

Chapter 1

Notations: Θ, O, Ω, o, and ω

The functions we consider are assumed to have positive real domains and real codomains
unless specified otherwise. Furthermore, the functions are assumed to be asymptotically
positive: f(n) is asymptotically positive iff ∃n0 : ∀n ≥ n0, f(n) > 0.

Basic definitions:

Θ(g(n)) =
{
f(n) | ∃c1, c2 > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n)

}
(1.1)

O(g(n)) =
{
f(n) | ∃c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) ≤ c2.g(n)

}
(1.2)

Ω(g(n)) =
{
f(n) | ∃c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c.g(n) ≤ f(n)

}
(1.3)

o(g(n)) =
{
f(n) | ∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) < c.g(n)

}
(1.4)

ω(g(n)) =
{
f(n) | ∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ c.g(n) < f(n)

}
(1.5)

1.4 is equivalent to:

lim
n→∞ f(n)

g(n)
= 0 (1.6)

if the limit exists. 1.5 is equivalent to:

lim
n→∞ g(n)

f(n)
= 0 (1.7)

if the limit exists.

1

It is universally accepted to write “f(n) = Θ(g(n))” instead of the formally correct “f(n) ∈
Θ(g(n))”.

Let us define the binary relations ≈, �, ≺, �, and � over functions as follows. For any two
functions f(n) and g(n):

f(n) ≈ g(n) ⇔ f(n) = Θ(g(n)) (1.8)

f(n) � g(n) ⇔ f(n) = O(g(n)) (1.9)

f(n) ≺ g(n) ⇔ f(n) = o(g(n)) (1.10)

f(n) � g(n) ⇔ f(n) = Ω(g(n)) (1.11)

f(n) � g(n) ⇔ f(n) = ω(g(n)) (1.12)

When the relations do not hold we write f(n) 6≈ g(n), f(n) 6� g(n), etc.

Properties of the relations:

1. Reflexivity: f(n) ≈ f(n), f(n) � f(n), f(n) � f(n).

2. Symmetry: f(n) ≈ g(n) ⇔ g(n) ≈ f(n).

3. Transitivity:

f(n) ≈ g(n) and g(n) ≈ h(n) ⇒ f(n) ≈ h(n)

f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n)

f(n) ≺ g(n) and g(n) ≺ h(n) ⇒ f(n) ≺ h(n)

f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n)

f(n) � g(n) and g(n) � h(n) ⇒ f(n) � h(n).

4. Transpose symmetry:

f(n) � g(n) ⇔ g(n) � f(n)

f(n) � g(n) ⇔ g(n) ≺ f(n).

5. f(n) ≺ g(n) ⇒ f(n) � g(n)

f(n) � g(n) 6⇒ f(n) ≺ g(n)

f(n) � g(n) ⇒ f(n) � g(n)

f(n) � g(n) 6⇒ f(n) � g(n)

2

6. f(n) ≈ g(n)⇒ f(n) 6≺ g(n)

f(n) ≈ g(n)⇒ f(n) 6� g(n)

f(n) ≺ g(n)⇒ f(n) 6≈ g(n)

f(n) ≺ g(n)⇒ f(n) 6� g(n)

f(n) ≺ g(n)⇒ f(n) 6� g(n)

f(n) � g(n)⇒ f(n) 6≈ g(n)

f(n) � g(n)⇒ f(n) 6≺ g(n)

f(n) � g(n)⇒ f(n) 6� g(n)

7. f(n) ≈ g(n) ⇔ f(n) � g(n) and f(n) � g(n)

8. There do not exist functions f(n) and g(n), such that f(n) ≺ g(n) and f(n) � g(n)

9. Let f(n) = f1(n) + f2(n) + f3(n) + . . .+ fk(n). Let

f1(n) � f2(n)

f1(n) � f3(n)

. . .

f1(n) � fk(n)

Then f(n) ≈ f1(n).

10. Let f(n) = f1(n)× f2(n)× . . .× fk(n). Let some of the fi(n) functions are constants.
Say, f1(n) = const, f2(n) = const, . . . , fm(n) = const for some m such that 1 ≤ m ≤
n. Then f(n) ≈ fm+1(n)× fm+2(n)× . . .× fk(n).

11. The statement “limn→∞ f(n)
g(n) exists and is equal to some L such that 0 < L < ∞” is

stronger than “f(n) ≈ g(n)”:

lim
n→∞ f(n)

g(n)
= L ⇒ f(n) ≈ g(n) (1.13)

f(n) ≈ g(n) 6⇒ lim
n→∞ f(n)

g(n)
exists.

To see why the second implication does not hold, suppose f(n) = n2 and g(n) =

(2 + sin (n))n2. Obviously g(n) oscillates between n2 and 3n2 and thus f(n) ≈ g(n)

but limn→∞ f(n)
g(n) does not exist.

Problem 1 ([CLR00], pp. 24–25). Let f(n) = 1
2n

2 − 3n. Prove that f(n) ≈ n2.

Solution:
For a complete solution we have to show some concrete positive constants c1 and c2 and a
concrete value n0 for the variable, such that for all n ≥ n0,

0 ≤ c1.n
2 ≤ 1

2
n2 − 3n ≤ c2.n

2

3

Since n > 0 this is equivalent to (divide by n2):

0 ≤ c1 ≤ 1

2
−
3

n
≤ c2

What we have here are in fact three inequalities:

0 ≤ c1 (1.14)

c1 ≤ 1

2
−
3

n
(1.15)

1

2
−
3

n
≤ c2 (1.16)

(1.14) is trivial, any c1 > 0 will do. To satisfy (1.16) we can pick n ′
0 = 1 and then any

positive c2 will do; say, c2 = 1. The smallest integer value for n that makes the right-hand
side of (1.15) positive is 7; the right-hand side becomes 1

2 − 3
7 = 7

14 − 6
14 = 1

14 . So, to saisfy
(1.15) we pick c1 = 1

14 and n ′′
0 = 7. The overall n0 is n0 = max {n ′

0, n
′′
0 } = 7. The solution

n0 = 7, c1 = 1
14 , c2 = 1 is obviusly not unique. �

Problem 2. Is it true that 1
1000n

3 � 1000n2?

Solution:
No. Assume the opposite. Then ∃c > 0 and ∃n0, such that for all n ≥ n0:

1

1000
n3 ≤ c.1000n2

It follows that ∀n ≥ n0:

1

1000
n ≤ 1000.c ⇔ n ≤ 1000000.c

That is clearly false. �

Problem 3. Is it true that for any two functions, at least one of the five relations ≈, �,
≺, �, and � holds between them?

Solution:
No. Proof by demonstrating an counterexample ([CLR00, pp. 31]): let f(n) = n and
g(n) = n1+sin n. Since g(n) oscillates between n0 = 1 and n2, it cannot be the case that
f(n) ≈ g(n) nor f(n) � g(n) nor f(n) ≺ g(n) nor f(n) � g(n) nor f(n) � g(n).

However, this argument from [CLR00] holds only when n ∈ R+. If n ∈ N+, we cannot
use the function g(n) directly, i.e. without proving additional stuff. Note that sinn reaches
its extreme values −1 and 1 at 2kπ + 3π

2 and 2kπ + π
2 , respectively, for integer k. As

these are irrational numbers, the integer n cannot be equal to any of them. So, it is no
longer true that g(n) oscillates between n0 = 1 and n2. If we insist on using g(n) in our
counterexample we have to argue, for instance, that:

• for infinitely many (positive) values of the integer variable, for some constant ε > 0,
it is the case that g(n) ≥ n1+ε;

4

• for infinitely many (positive) values of the integer variable, for some constant σ > 0,
it is the case that g(n) ≤ n1−σ.

An alternative is to use the function g ′(n) = n1+sin (πn+π/2) that indeed oscillates between
n0 = 1 and n2 for integer n. Another alternative is to use

g ′′(n) =

{
n2, if n is even,
1, else.

�

Problem 4. Let p(n) be any univariate polynomial of degree k, such that the coefficient in
the higherst degree term is positive. Prove that p(n) ≈ nk.

Solution:
p(n) = akn

k + ak−1n
k−1 + . . .+ a1n + a0 with ak > 0. We have to prove that there exist

positive constants c1 and c2 and some n0 such that for all n ≥ n0, 0 ≤ c1nk ≤ p(n) ≤ c2nk.
Since the leftmost inequality is obvious, we have to prove that

c1n
k ≤ akn

k + ak−1n
k−1 + ak−2n

k−2 . . .+ a1n+ a0 ≤ c2nk

For positive n we can divide by nk, obtaining:

c1 ≤ ak +
ak−1

n
+
ak−2

n2
+ . . .+

a1

nk−1
+
a0

nk︸ ︷︷ ︸
T

≤ c2

Now it is obvious that any c1 and c2 such that 0 < c1 < ak and c2 > ak are suitable because
limn→∞ T = 0.

�

Problem 5. Let a ∈ R and b ∈ R+. Prove that (n+ a)b ≈ nb

Solution:
Note that this problem does not reduce to Problem 4 except in the special case when b is
integer. We start with the following trivial observations:

n+ a ≤ n+ |a| ≤ 2n, provided that n ≥ |a|

n+ a ≥ n− |a| ≥ n

2
, provided that

n

2
≥ |a|, that is, n ≥ 2|a|

It follows that:

1

2
n ≤ n+ a ≤ 2n, if n ≥ 2|a|

By raising to the bth power we obtain:(
1

2

)b

nb ≤ (n+ a)b ≤ 2bnb

So we have a proof with c1 =
(

1
2

)b
, c2 = 2b, and n0 = d2|a|e. �

5

Problem 6. Prove that for any two asymptotically positive functions f(n) and g(n), it is
the case that max (f(n), g(n)) ≈ f(n) + g(n).

Solution:
We are asked to prove there exist positive constants c1 and c2 and a certain n0, such that
for all n ≥ n0:

0 ≤ c1(f(n) + g(n)) ≤ max (f(n), g(n)) ≤ c2(f(n) + g(n))

As f(n) and g(n) are asymptotically positive,

∃n ′
0 : ∀n ≥ n ′

0, f(n) > 0

∃n ′′
0 : ∀n ≥ n ′′

0 , g(n) > 0

Let n ′′′
0 = max {n ′

0, n
′′
0 }. Obviously,

0 ≤ c1(f(n) + g(n)) for n ≥ n ′′′
0 , if c1 > 0

It is also obvious that when n ≥ n ′′′
0 :

1

2
f(n) +

1

2
g(n) ≤ max (f(n), g(n))

f(n) + g(n) ≥max (f(n), g(n)) ,

which we can write as:

1

2
(f(n) + g(n)) ≤ max (f(n), g(n)) ≤ f(n) + g(n)

So we have a proof with n0 = n ′′′
0 , c1 = 1

2 , and c2 = 1. �

Problem 7. Which of the following are true:

2n+1 ≈ 2n

22n ≈ 2n

Solution:
2n+1 ≈ 2n is true because 2n+1 = 2.2n and for any constant c, c.2n ≈ 2n. On the other
hand, 22n ≈ 2n is not true. Assume the opposite. Then, having in mind that 22n = 2n.2n,
it is the case that for some constant c2 and all n→ +∞:

2n.2n ≤ c2.2n ⇔ 2n ≤ c2

That is clearly false. �

Problem 8. Which of the following are true:

1

n2
≺ 1

n
(1.17)

2
1

n2 ≺ 2
1
n (1.18)

6

Solution:
(1.17) is true because

0 ≤ 1

n2
< c.

1

n
⇔ 0 ≤ 1

n
< c

is true for every positive constant c and sufficiently large n. (1.18), however, is not true.
Assume the opposite. Then:

∀c > 0,∃n0 : ∀n ≥ n0, 0 ≤ 2
1

n2 < c.2
1
n ⇔ 0 ≤ 2

1

n2

2
1
n

< c (1.19)

But

lim
n→∞

(
2

1

n2

2
1
n

)
= lim

n→∞
(
2

1

n2 − 1
n

)
= 1 because (1.20)

lim
n→∞

(
1

n2
−
1

n

)
= lim

n→∞
(
1− n

n2

)
= lim

n→∞
(

1
n − 1

n

)
= 0 (1.21)

It follows that (1.19) is false. �

Problem 9. Let a be a constant such that a > 1. Which of the following are true:

f(n) ≈ g(n) ⇒ af(n) ≈ ag(n) (1.22)

f(n) � g(n) ⇒ af(n) � ag(n) (1.23)

f(n) ≺ g(n) ⇒ af(n) ≺ ag(n) (1.24)

for all asymptotically positive functions f(n) and g(n).

Solution:
(1.22) is not true – Problem 7 provides a counterexample since 2n ≈ n and 22n 6≈ 2n.
The same counterexample suffices to prove that (1.23) is not true – note that 2n � n but
22n 6� 2n.

Now consider (1.24).

case 1, g(n) is increasing: True. Assume f(n) ≺ g(n). According to (1.4) on page 1,

∀c > 0, ∃n0 : ∀n ≥ n0, 0 ≤ f(n) < c.g(n) (1.25)

It follows that, for any c > 0 and all sufficiently large n,

af(n) < ac.g(n) (1.26)

We have to prove that:

∀k > 0, ∃n1 : ∀n ≥ n1, 0 ≤ af(n) < k.ag(n)

0 ≤ af(n) is trivially true so our task reduces to proving that for any k > 0 and all
sufficiently large n,

af(n) < k.ag(n) = aloga k.ag(n) = aloga k+g(n)

7

Renaming loga k to k1, what we have to prove is that for any constant k1 > 0 and
sufficiently large n,

af(n) < ak1+g(n) (1.27)

Consider any fixed k1 > 0. No matter how large k1 is, for any positive constant c1 > 1,
for all sufficiently large n—provided that g(n) is increasing—it is the case that:

k1 + g(n) ≤ c1.g(n)

Therefore, under the same assumptions,

ak1+g(n) ≤ ac1.g(n) (1.28)

From (1.27) and (1.28) it follows that what we have to prove is:

af(n) < ac1.g(n), for any constant c1 > 1. (1.29)

Compare (1.29) with (1.26), which is given. Since (1.26) holds for any positive c,
certainly it holds with the additional restriction that the constant is greater than one,
and thus we conclude that (1.29) is true.

case 2, g(n) is not increasing: In this case (1.24) is not true. Consider Problem 8. As

it is shown there, 1
n2 ≺ 1

n but 2
1

n2 6≺ 2
1
n . �

Problem 10. Let a be a constant such that a > 1. Which of the following are true:

af(n) ≈ ag(n) ⇒ f(n) ≈ g(n) (1.30)

af(n) � ag(n) ⇒ f(n) � g(n) (1.31)

af(n) ≺ ag(n) ⇒ f(n) ≺ g(n) (1.32)

for all asymptotically positive functions f(n) and g(n).

Solution:
(1.30) is true, if g(n) is increasing. Suppose there exist positive constants c1 and c2 and
some n0 such that

0 ≤ c1.ag(n) ≤ af(n) ≤ c2.ag(n),∀n ≥ n0

Since a > 1 and f(n) and g(n) are asymptotically positive, for all sufficiently large n, the
exponents have strictly larger than one values. Therefore, we can take logarithm to base a
(ignoring the leftmost inequality) to obtain:

loga c1 + g(n) ≤ f(n) ≤ loga c2 + g(n)

First note that for any constant k1 such that 0 < k1 < 1, k1.g(n) ≤ loga c1 + g(n) for all
sufficiently large n, regardless of whether the logarithm is positive or negative or zero. Then
note that for any constant k2 such that k2 > 1, loga c2 + g(n) ≤ k2.g(n) for all sufficiently

8

large n, regardless of whether the logarithm is positive or negative or zero. Conclude there
exists n1, such that

k1.g(n) ≤ f(n) ≤ k2.g(n), ∀n ≥ n1

However, if g(n) is not increasing, (1.30) is not true. We already showed (see (1.20)) that

limn→∞
(

2
1

n2

2
1
n

)
= 1. According to (1.13), it follows that 2

1

n2 ≈ 2
1
n . However, 1

n2 6≈ 1
n (see

(1.21)).

Consider (1.31). It is true if g(n) is increasing and not true otherwise. If g(n) is increasing,

the proof can be done easily as in the case with (1.30). Otherwise, observe that 2
1

n2 � 2
1
n

but 1
n2 6� 1

n

Now consider (1.32). It is not true. As a counterexample, consider that 2n ≺ 22n but
n 6≺ 2n. �

Problem 11. Let a be a constant such that a > 1. Which of the following are true:

logaφ(n) ≈ logaψ(n) ⇒ φ(n) ≈ ψ(n) (1.33)
logaφ(n) � logaψ(n) ⇒ φ(n) � ψ(n) (1.34)
logaφ(n) ≺ logaψ(n) ⇒ φ(n) ≺ ψ(n) (1.35)

φ(n) ≈ ψ(n) ⇒ logaφ(n) ≈ logaψ(n) (1.36)
φ(n) � ψ(n) ⇒ logaφ(n) � logaψ(n) (1.37)
φ(n) ≺ ψ(n) ⇒ logaφ(n) ≺ logaψ(n) (1.38)

for all asymptotically positive functions φ(n) and ψ(n).

Solution:
Let φ(n) = af(n) and ψ(n) = ag(n), which means that logaφ(n) = f(n) and logaψ(n) =

g(n). Consider (1.22) and conclude that (1.33) is not true. Consider (1.30) and conclude
that (1.36) is true if ψ(n) is increasing, and false otherwise. Consider (1.23) and conlude
that (1.34) is not true. Consider (1.31) and conclude that (1.37) is true if ψ(n) is increasing,
and false otherwise. Consider (1.24) and conclude that (1.35) is true if ψ(n) is increasing,
and false otherwise. Consider (1.32) and conlude that (1.38) is not true. �

Problem 12. Prove that for any two asymptotically positive functions f(n) and g(n),
f(n) ≈ g(n) iff f(n) � g(n) and f(n) � n.

Solution:
In one direction, assume that f(n) ≈ g(n). Then there exist positive constants c1 and c2
and some n0, such that:

0 ≤ c1.g(n) ≤ f(n) ≤ c2.g(n), ∀n ≥ n0

It follows that,

0 ≤ c1.g(n) ≤ f(n), ∀n ≥ n0 (1.39)
0 ≤ f(n) ≤ c2.g(n), ∀n ≥ n0 (1.40)

9

In the other direction, assume that f(n) � g(n) and f(n) � g(n). Then there exists a
positive constant c ′ and some n ′

0, such that:

0 ≤ f(n) ≤ c ′.g(n),∀n ≥ n ′
0

and there exists a positive constant c ′′ and some n ′′
0 , such that:

0 ≤ c ′′.g(n) ≤ f(n),∀n ≥ n ′′
0

It follows that:

0 ≤ c ′.g(n) ≤ f(n) ≤ c ′′.g(n),∀n ≥ max {n ′
0, n

′′
0 }

�

Lemma 1 (Stirling’s approximation).

n! =
√
2πn

nn

en

(
1+Θ

(
1

n

))
(1.41)

�

Here, Θ
(

1
n

)
means any function that is in the set Θ

(
1
n

)
.

Problem 13. Prove that

n! ≈ n lgn (1.42)

Solution:
Use Stirling’s approximation, ignoring the

(
1+Θ

(
1
n

))
factor, and take logarithm of both

sides to obtain:

lg (n!) = lg (
√
2π) + lgn+ n lgn− n lg e

By Property 9 of the relations, lg (
√
2π) + lgn+ n lgn− n lg e ≈ n lgn. �

Problem 14. Prove that for any constant a > 1,

an ≺ n! ≺ nn (1.43)

Solution:
Because of the factorial let us restrict n to positive integers.

lim
n→∞

n.(n− 1).(n− 2) . . . 2.1

a . a . a . . . a . a︸ ︷︷ ︸
n times

 = 0

lim
n→∞

n.(n− 1).(n− 2) . . . 2.1

n . n . n . . . n . n︸ ︷︷ ︸
n times

 =∞
�

10

Problem 15 (polylogarithm versus constant power of n). Let a, k and ε be any
constants, such that k ≥ 1, a > 1, and ε > 0. Prove that:

(loga n)k ≺ nε (1.44)

Solution:
Take loga of both sides. The left-hand side yields k. loga loga n and the right-hand side
yields ε. loga n. But

k. loga loga n ≺ ε. loga n (1.45)

because

loga loga n ≺ loga n

Having in mind (1.35) we conclude immediately the desired relation holds. �

Problem 16 (constant power of n versus exponent). Let a and ε be any constants,
such that a > 1 and ε > 0. Prove that:

nε ≺ an (1.46)

Solution:
Take loga of both sides. The left-hand side yields ε. loga n and the right-hand side yields
n. But

ε. loga n ≺ n (1.47)

Having in mind (1.35) we conclude immediately the desired relation holds. �

Definition 1 (log-star function, [CLR00], pp. 36). Let the function lg(i) n be defined
recursively for nonnegative integers i as follows:

lg(i) n =


n, if i = 0

lg
(
lg(i−1) n

)
, if i > 0 and lg(i−1) n > 0

undefined, if i > 0 and lg(i−1) n < 0 or lg(i−1) n is undefined

Then

lg∗ n = min
{
i ≥ 0 | lg(i) n ≤ 1

}
�

11

According to this definition,

lg∗ 2 = 1, since lg(0) 2 = 2 and lg(1) 2 = lg
(
lg(0) 2

)
= lg (2) = 1

lg∗ 3 = 2, since lg(0) 3 = 3 and lg
(
lg(0) 3

)
= lg (lg 3) = 0.6644 . . .

lg∗ 4 = 2

lg∗ 5 = 3

. . .

lg∗ 16 = 3

lg∗ 17 = 4

. . .

lg∗ 65536 = 4

lg∗ 65537 = 5

. . .

lg∗ 265536 = 5

lg∗
(
265536 + 1

)
= 6

. . .

Obviously, every real number t can be represented by a tower of twos:

t = 222..
.2

s

where s is a real number such that 1 < s ≤ 2. The height of the tower is the number of
elements in this sequence. For instance,

number its tower of twos the height of the tower

2 2 1

3 21.5849625007... 2

4 22 2

5 221.2153232957...
3

16 222
3

17 2221.0223362884...

4

65536 2222

4

65537 22221.00000051642167...

5

Having that in mind, it is trivial to see that lg∗ n is the height of the tower of twos of n.

Problem 17 ([CLR00], problem 2-3, pp. 38–39). Rank the following thirty functions
by order of growth. That is, find the equivalence classes of the “≈” relation and show their

12

order by “�”.

lg (lg∗ n) 2lg
∗ n

(√
2
)lg n

n2 n! (lgn)!(
3

2

)n

n3 lg2 n lg (n!) 22n
n

1
lg n

ln lnn lg∗n n.2n nlg lg n lnn 1

2lg n (lgn)lg n en 4lg n (n+ 1)!
√

lgn

lg∗ (lgn) 2
√

2 lg n n 2n n lgn 22n+1

Solution:

22n+1 � 22n
because 22n+1

= 22.2n
= 22n × 22n

.

22n � (n + 1)! To see why, take logarithm to base two of both sides. The left-hand
side becomes 2n, the right-hand side becomes lg ((n+ 1)!) By (1.41), lg ((n+ 1)!) ≈ (n+

1) lg (n+ 1), and clearly (n + 1) lg (n+ 1) ≈ n lgn. As 2n � n lgn, by (1.35) we have
22n � (n+ 1)!

(n+ 1)! � n! because (n+ 1)! = (n+ 1)× n!

n! � en by (1.43).

en � n.2n. To see why, consider:

lim
n→∞ n.2n

en
= lim

n→∞ n
en

2n

= lim
n→∞ n(

e
2

)n = 0

n.2n � 2n

2n �
(

3
2

)n
. To see why, consider:

lim
n→∞

(
3
2

)n
2n

= lim
n→∞

(
3

4

)n

= 0

(
3
2

)n � nlg (lg n). To see why, take lg of both sides. The left-hand side becomes n. lg
(

3
2

)
,

the right-hand side becomes lgn.lg (lgn). Clearly, lg2 n � lgn.lg (lgn) and n � lg2 n by
(1.44). By transitivity, n � lgn.lg (lgn), and so n. lg

(
3
2

)
� lgn.lg (lgn). Apply (1.35) and

the desired conclusion follows.

(lgn)lg n = nlg (lg n), which is obvious if we take lg of both sides. So, (lgn)lg n ≈ nlg (lg n).

(lgn)lg n � (lgn) ! To see why, substitute lgn with m, obtaining mm � m! and apply
(1.43).

13

(lgn) ! � n3. Take lg of both sides. The left-hand side becomes lg ((lgn) !). Substi-
tute lgn with m, obtaining lg (m!). By (1.42), lg (m!) ≈ m lgm, therefore lg ((lgn) !) ≈
(lgn).(lg (lgn)). The right-hand side becomes 3. lgn. Compare (lgn).(lg (lgn)) with 3. lgn:

lim
n→∞ 3. lgn

(lgn).(lg (lgn))
= lim

n→∞ 3

lg (lgn)
= 0

It follows that (lgn).(lg (lgn)) � 3. lgn. Apply (1.35) to draw the desired conclusion.

n3 � n2.

n2 � n lgn.

lgn! ≈ n lgn (see (1.42)).

n lgn � n.

n ≈ 2lg n because n = 2lg n by the properties of the logarithm.

n � (
√
2)lg n because (

√
2)lg n = 2

1
2

lg n = 2lg
√

n =
√
n and clearly n �

√
n.

(
√
2)lg n � 2

√
2 lg n. To see why, note that lgn �

√
lgn, therefore 1

2 . lgn �
√
2.
√

lgn =
√
2 lgn. Apply (1.24) and conclude that 2

1
2
. lg n � 2

√
2 lg n, i.e. (

√
2)lg n � 2

√
2 lg n.

2
√

2 lg n � lg2 n. To see why, take lg of both sides. The left-hand side becomes
√
2 lgn and

the right-hand side becomes lg (lg2 n) = 2. lg (lgn). Substitute lgn with m: the left-hand
side becomes

√
2m =

√
2
√
m =

√
2.m

1
2 and the right-hand side becomes 2 lgm. By (1.44)

we know that m
1
2 � lgm, therefore

√
2.m

1
2 � 2 lgm, therefore

√
2m � 2 lgm, therefore√

2 lgn � lg (lg2 n). Having in mind (1.35) we draw the desired conclusion.

lg2 n � lnn. To see this is true, observe that lnn = lg n
lg e .

lnn �
√

lgn.

√
lgn � ln lnn. The left-hand side is

√
ln n
ln 2 . Substitute lnn with m and the claim becomes

1√
ln 2
.
√
m � lnm, which follows from (1.44).

ln lnn � 2lg∗n. To see why this is true, note that ln lnn ≈ lg lgn and rewrite the claim as
lg lgn � 2lg∗n. Take lg of both sides. The left-hand side becomes lg lg lgn, i.e. a triple
logarithm. The right-hand side becomes lg∗ n. If we think of n as a tower of twos, it is
obvious that the triple logarithm decreases the height of the tower with three, while, as
we said before, the log-star measures the height of the tower. Clearly, the latter is much
smaller than the former.

2lg
∗ n � lg∗ n. Clearly, for any increasing function f(n), 2f(n) � f(n).

lg∗ n ≈ lg∗ (lgn). Think of n as a tower of twos and note that the difference in the height
of n and lgn is one. Therefore, lg∗ (lgn) = (lg∗ n) − 1.

14

lg∗ n � lg (lg∗ n). Substitute lg∗ n with f(n) and the claim becomes f(n) � lg f(n) which is
clearly true since f(n) is increasing.

lg (lg∗ n) � 1.

1 ≈ n
1

lg n . Note that n
1

lg n = 2: take lg of both sides, the left-hand side becomes lg
(
n

1
lg n

)
=

1
lg n . lgn = 1 and the right-hand side becomes lg 2 = 1. �

Problem 18. Give an example of a function f(n), n ∈ N+, such that for function g(n)

among the thirty functions from Problem 17, f(n) 6� g(n) and f(n) 6� g(n).

Solution:
For instance,

f(n) =

{
22n+2

, if n is even
1
n , if n is odd

�

Problem 19. Is it true that for any asymptotically positive functions f(n) and g(n), f(n)+

g(n) ≈ min (f(n), g(n))?

Solution:
No. As a counterexample, consider f(n) = n and g(n) = 1. Then min (f(n), g(n)) = 1,
f(n) + g(n) = n+ 1, and certainly n+ 1 6≈ 1. �

Problem 20. Is it true that for any asymptotically positive function f(n), f(n) � (f(n))2?

Solution:
If f(n) is increasing, it is trivially true. If it is decreasing, however, it may not be true:
consider (1.17). �

Problem 21. Is it true that for any asymptotically positive function f(n), f(n) ≈ f(n
2)?

Solution:
No. As a counterexample, consider f(n) = 2n. Then f(n

2) = 2
n
2 . As we already saw,

2n 6≈ 2
n
2 . �

Problem 22. Compare the growth of nlg n and (lgn)n.

Solution:
Take logarithm of both sides. The left-hand side becomes (lgn)(lgn) = lg2 n, the right-
hand side, n. lg (lgn). As n. lg (lgn) � lg2 n, it follows that (lgn)n � nlg n. �

Problem 23. Compare the growth of nlg lg lg n and (lgn)!

15

Solution:
Take lg of both sides. The left-hand side becomes (lgn).(lg lg lgn), the right-hand side
becomes lg ((lgn)!). Substitute lgn with m is the latter expression to get lg ((m)!) ≈
m lgm. And that is (lgn).(lg lgn). Since (lgn).(lg lgn) � (lgn).(lg lg lgn), it follows that
(lgn)! � nlg lg lg n. �

Problem 24. Let n!! = (n!)!. Compare the growth of n!! and (n− 1)!!× ((n− 1)!)n!.

Solution:
Let (n− 1)! = v. Then n! = nv. We compare

n!! vs (n− 1)!!× ((n− 1)!)n!

(nv)! vs v!× vnv

Apply Stirling’s approximation to both sides to get:

√
2πnv

(nv)nv

env
vs

√
2πv

vv

ev
× vnv

√
2πnv (nv)nv vs

√
2πv e(n−1)v × vv × vnv

Divide by
√
2πv vnv both sides:

√
nnnv vs e(n−1)v × vv

Ignore the
√
n factor on the left. If we derive without it that the left side grows faster,

surely it grows even faster with it. So, consider:

nnv vs e(n−1)v × vv

Raise both sides to 1
v :

nn vs en−1 × v

That is,

nn vs en−1 × (n− 1)!

Apply Stirling’s aproximation second time to get:

nn vs en−1 ×
√
2π(n− 1)

(n− 1)n−1

en−1

That is,

nn vs
√
2π(n− 1) (n− 1)n−1

Since
√
2π(n− 1) (n− 1)n−1 ≈ (n− 1)(n− 1

2), we have

nn vs (n− 1)(n− 1
2)

Clearly, nn � (n− 1)(n− 1
2), therefore n!! � (n− 1)!!× ((n− 1)!)n!. �

16

Lemma 2. The function series:

S(x) =
ln x
x

+
ln2 x

x2
+

ln3 x

x3
+ . . .

is convergent for x > 1. Furthermore, limx→∞ S(x) = 0.

Proof:
It is well known that the series

S ′(x) =
1

x
+
1

x2
+
1

x3
+ . . .

called geometric series is convergent for x > 1 and S ′(x) = 1
x−1 when x > 1. Clearly,

limx→∞ S ′(x) = 0. Consider the series

S ′′(x) =
1√
x

+
1

(
√
x)2

+
1

(
√
x)3

+ . . . (1.48)

It is a geometric series and is convergent for
√
x > 1, i.e. x > 1, and limx→∞ S ′′(x) = 0.

Let us rewrite S(x) as

S(x) =
1

√
x.

√
x

ln x

+
1

(
√
x)2.

(√
x

ln x

)2
+

1

(
√
x)3.

(√
x

ln x

)3
+ . . . (1.49)

For each term fk(x) = 1

(
√

x)k.
(√

x
ln x

)k of S(x), k ≥ 1, for large enough x, it is the case that

fk(x) < gk(x) where gk(x) = 1

(
√

x)
k is the kth term of S ′′(x). To see why this is true,

consider (1.44). Then the fact that S ′′(x) is convergent and limx→∞ S ′′(x) = 0 implies the
desired conclusion. �

Problem 25 ([Knu73], pp. 107). Prove that n
√
n ≈ 1.

Solution:
We will show an even stronger statement: limn→∞ n

√
n = 1. It is known that:

ex = 1+ x+
x2

2!
+
x3

3!
+ . . .

Note that n
√
n = eln

n√n = e(
ln n
n).

e(
ln n
n) = 1+

lnn
n

+

(
ln n
n

)2
2!

+

(
ln n
n

)3
3!

+ . . .︸ ︷︷ ︸
T(n)

Lemma 2 implies limn→∞ T(n) = 0. It follows that limn→∞ n
√
n = 1. �

We can also say that n
√
n = 1+O

(
lg n
n

)
, n
√
n = 1+ lg n

n +O
(

lg2 n
n2

)
, etc, where the big-Oh

notation stands for any function of the set.

17

Problem 26 ([Knu73], pp. 107). Prove that n
(

n
√
n− 1

)
≈ lnn.

Solution:
As

n
√
n = 1+

lnn
n

+

(
ln n
n

)2
2!

+

(
ln n
n

)3
3!

+ . . .

it is the case that:

n
√
n− 1 =

lnn
n

+

(
ln n
n

)2
2!

+

(
ln n
n

)3
3!

+ . . .

Multiply by n to get:

n
(

n
√
n− 1

)
= lnn+

(lnn)2

2!n
+

(lnn)3

3!n2
+ . . .︸ ︷︷ ︸

T(n)

Note that limn→∞ T(n) = 0 by an obvious generalisation of Lemma 2. The claim follows
immediately. �

Problem 27. Compare the growth of nn, (n+ 1)n, nn+1, and (n+ 1)n+1.

Solution:
nn ≈ (n+ 1)n because

lim
n→∞ (n+ 1)n

nn
= lim

n→∞
(
n+ 1

n

)n

= lim
n→∞

(
1+

1

n

)n

= e

Clearly, nn ≺ n(n+1) = n.nn. And n(n+1) ≈ (n+ 1)(n+1):

lim
n→∞ (n+ 1)n+1

nn+1
= lim

n→∞
(
1+

1

n

)n+1

= lim
n→∞

(
1+

1

n

)n

lim
n→∞

(
1+

1

n

)
= e.1 = e

�

Problem 28. Let k be a constant such that k > 1. Prove that

1+ k+ k2 + k3 + . . .+ kn = Θ(kn)

Solution:
First assume n is an integer variable. Then

1+ k+ k2 + k3 + . . .+ kn =
kn+1 − 1

k− 1
= Θ(kn)

The result can obviously be extended for real n, provided we define appropriately the sum.
For instance, if n ∈ R+ \ N let the sum be

S(n) = 1+ k+ k2 + k3 + . . .+ kbn−1c + kbnc + kn

By the above result, S(n) = kn +Θ
(
kbnc

)
= Θ(kn). �

18

Problem 29. Let k be a constant such that 0 < k < 1. Prove that

1+ k+ k2 + k3 + . . .+ kn = Θ(1)

Solution:

1+ k+ k2 + k3 + . . .+ kn <

∞∑
t=0

kt =
1

1− k
= Θ(1) �

Corollary 1.

1+ k+ k2 + k3 + . . .+ kn =


Θ(1), if 0 < k < 1
Θ(n), if k = 1

Θ(kn), if k > 1

�

Problem 30. Let f(x) = 22bxc
and g(x) = 22dxe

where x ∈ R+. Determine which of the
following are true and which are false:

1. f(x) ≈ g(x)

2. f(x) � g(x)

3. f(x) ≺ g(x)

4. f(x) � g(x)

5. f(x) � g(x)

Solution:
Note that ∀x ∈ N+, bxc = dxe, therefore f(x) = g(x) whenever x ∈ N+. On the other hand,
∀x ∈ R+\N+, dxe = bxc+1, therefore g(x) = 22bxc+1

= 22.2bxc
=
(
22bxc)2

= (f(x))2 whenever
x ∈ R+ \ N+. Figure 1.1 illustrates the way that f(x) and g(x) grow.

First assume that f(x) ≺ g(x). By definition, for every constant c > 0 there exists x0,
such that ∀x ≥ x0, f(x) < c.g(x). It follows for c = 2 there exists a value for the variable,
say x ′, such that ∀x ≥ x ′, f(x) < 2g(x). However,

dx ′e ≥ x ′

Therefore,

f(dx ′e) < 2g(dx ′e)

On the other hand,

dx ′e ∈ N+ ⇒ f(dx ′e) = g(dx ′e)

We derived

f(dx ′e) = g(dx ′e) and f(dx ′e) < 2g(dx ′e)

19

f(x) = 22bxc

g(x) = 22dxe

x

Figure 1.1: f(x) and g(x) from Problem 30.

20

That is impossible for positive real numbers such as f(dx ′e) and g(dx ′e). It follows

f(x) 6≺ g(x)

Analogously we prove that

f(x) 6� g(x)

To see that f(x) 6≈ g(x), note that ∀x̃ ∈ R+,∃x ′′ ≥ x̃, such that g(x ′′) = (f(x ′′))2. As f(x)
is a growing function, its square must have a higher asymptotic growth rate. Now we prove
that f(x) � g(x). Indeed,

∀x ∈ R+, bxc ≤ dxe⇒
∀x ∈ R+, 2bxc ≤ 2dxe ⇒
∀x ∈ R+, 22bxc≤ 22dxe ⇒ ∃c > 0, c = const, such that ∀x ∈ R+, 22bxc ≤ c.22dxe

Finally we prove that f(x) 6� g(x). Assume the opposite. Since f(x) � g(x), by property 7
on page 3 we derive f(x) ≈ g(x) and that contradicts our result that f(x) 6≈ g(x). �

21

Chapter 2

Iterative Algorithms

In this section we compute the asymptotic running time of algorithms that use the for and
while statements but make no calls to other algorithms or themselves. The time complexity
is expressed as a function of the size of the input, in case the input is an array or a matrix,
or as a function of the upper bound of the loops. Consider the time complexity of the
following trivial algorithm.

Add-1(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 a ← a+ i

4 return a

We make the folloing assumptions:

• the expression at line 3 is executed in constant time regardless of how large n is,

• the expression at line 1 is executed in constant time, and

• the loop control variable check and assignment of the for loop at line 2 are executed
in constant time.

Since we are interested in the asymptotic running time, not in the precise one, it suffices to
find the number of times the expression inside the loop (line 3 in this case) is executed as
a function of the upper bound on the loop control variable n. Let that function be f(n).
The time complexity of Add-1 will then be Θ(f(n)). We compute f(n) as follows. First
we substitute the expression inside the loop with a← a+ 1 where a is the counter variable
that is set to zero initially. Then find the value of a after the loop finishes as a function
of n where n is the upper bound n of the loop control variable i. Using that approach,
algorithm Add-1 becomes Add-1-modified as follows.

Add-1-modified(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 a ← a+ 1

4 return a

22

The value that Add-1-modified outputs is
∑n

i=1 1 = n, therefore its time complexity
is Θ(n). Now consider another algorithm:

Add-2(n: nonnegative integer)
1 return n

Clearly, Add-2 is equivalent to Add-1 but the running time of Add-2 is, under the said
assumptions, constant. We denote constant running time by Θ(1)†. It is not incorrect to
say the running time of both algorithms is O(n) but the big-Theta notation is superior as
it grasps precisely—in the asymptotic sense—the algorithm’s running time.

Consider the following iterative algorithm:

Add-3(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 for j ← 1 to n

4 a ← a+ 1

5 return a

The value it outputs is
n∑

i=1

n∑
j=1

1 =

n∑
i=1

n = n2, therefore its time complexity is Θ(n2).

Algorithm Add-3 has two nested cycles. We can generalise that the running time of k
nested cycles as follows.

Add-generalised(n: nonnegative integer)
1 for i1 ← 1 to n

2 for i2 ← 1 to n

3 . . .
4 for ik ← 1 to n

5 expression

where expression is computed in Θ(1), has running time Θ(nk).

Let us consider a modification of Add-3:

Add-4(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 for j ← i to n

4 a ← a+ 1

5 return a

†All constants are bit-Theta of each other so we might have as well used Θ(1000) or Θ(0.0001) but we
prefer the simplest form Θ(1).

23

The running time is determined by the output a and that is:

n∑
i=1

n∑
j=i

1 =

n∑
i=1

(n∑
j=1

1︸ ︷︷ ︸
n

−

i−1∑
j=1

1︸ ︷︷ ︸
i−1

)
=

n∑
i=1

(n− i+ 1) =

n∑
i=1

(n+ 1) −

n∑
i=1

i =

n(n+ 1) −
n(n+ 1)

2
=
1

2
n2 +

1

2
n = Θ(n2) (see Problem 4 on page 5.)

It follows that asymptotically Add-4 has the same running time as Add-3. Now consider
a modification of Add-4.

Add-5(n: nonnegative integer)
1 a ← 0
2 for i ← 1 to n

3 for j ← i+ 1 to n

4 a ← a+ 1

5 return a

The running time is determined by the output a and that is:

n∑
i=1

n∑
j=i+1

1 =

n∑
i=1

(n∑
j=1

1︸ ︷︷ ︸
n

−

i∑
j=1

1︸ ︷︷ ︸
i

)
=

n∑
i=1

(n− i) =

n∑
i=1

(n) −

n∑
i=1

i =

n2 −
n(n+ 1)

2
=
1

2
n2 −

1

2
n = Θ(n2)

Consider the following algorithm:

A2(n: positive integer)
1 a ← 0

2 for i ← 1 to n− 1

3 for j ← i+ 1 to n

4 for k ← 1 to j

5 a ← a+ 1

6 return a

We are asked to determine a that A2 returns as a function of n. The answer clearly is

24

n−1∑
i=1

n∑
j=i+1

j∑
k=1

1, we just need to find an equivalent closed form.

n−1∑
i=1

n∑
j=i+1

j∑
k=1

1 =

n−1∑
i=1

n∑
j=i+1

j =

n−1∑
i=1

 n∑
j=1

j−

i∑
j=1

j

 =

n−1∑
i=1

(
1

2
n(n+ 1) −

1

2
i(i+ 1)

)
=

n−1∑
i=1

(
1

2
n(n+ 1)

)
−
1

2

n−1∑
i=1

(i2 + i) =

1

2
n(n+ 1)(n− 1) −

1

2

n−1∑
i=1

i2 −
1

2

n−1∑
i=1

i

But
n∑

i=1

i2 =
1

6
n(n + 1)(2n + 1), therefore

n−1∑
i=1

i2 =
1

6
(n − 1)n(2n − 1). Further,

n−1∑
i=1

i =

1

2
n(n− 1), so we have

1

2
n(n− 1)(n+ 1) −

1

12
n(n− 1)(2n− 1) −

1

4
n(n− 1) =

1

2
n(n− 1)

(
n+ 1−

1

6
(2n− 1) −

1

2

)
=

1

12
n(n− 1)(6n+ 3− 2n+ 1) =

1

12
n(n− 1)(4n+ 4) =

1

3
n(n− 1)(n+ 1)

That implies that the running time of A2 is Θ(n3). Clearly A2 is equivalent to the following
algorithm.

A3(n: positive integer)
1 return n(n− 1)(n+ 1)/3

whose running time is Θ(1).

A4(n: positive integer)
1 a ← 0

2 for i ← 1 to n

3 for j ← i+ 1 to n

4 for k ← i+ j− 1 to n

5 a ← a+ 1

6 return a

Problem 31. Find the running time of algorithm A4 by determining the value of a it
returns as a function of n, f(n). Find a closed form for f(n).

25

Solution:

f(n) =

n∑
i=1

n∑
j=i+1

n∑
k=i+j−1

1

Let us evaluate the innermost sum
n∑

k=i+j−1

1. It is easy to see that the lower boundary

i+ j− 1 may exceed the higher boundary n. If that is the case, the sum is zero because the
index variable takes values from the empty set. More precisely, for any integer t,

n∑
i=t

1 =

{
n− t+ 1 , if t ≤ n
0 , else

It follows that

n∑
k=i+j−1

1 =

{
n− i− j+ 2 , if i+ j− 1 ≤ n ⇔ j ≤ n− i+ 1

0 , else

Then

f(n) =

n∑
i=1

n−i+1∑
j=i+1

(n+ 2− (i+ j))

Now the innermost sum is zero when i + 1 > n − i + 1 ⇔ 2i > n ⇔ i >
⌊

n
2

⌋
, therefore

26

the maximum i we have to consider is
⌊

n
2

⌋
:

f(n) =

bn
2 c∑

i=1

n−i+1∑
j=i+1

(n+ 2− (i+ j)) =

(n+ 2)

bn
2 c∑

i=1

n−i+1∑
j=i+1

1−

bn
2 c∑

i=1

i

n−i+1∑
j=i+1

1

−

bn
2 c∑

i=1

n−i+1∑
j=i+1

j =

(n+ 2)

bn
2 c∑

i=1

(n− i+ 1− (i+ 1) + 1) −

bn
2 c∑

i=1

i(n− i+ 1− (i+ 1) + 1)−

bn
2 c∑

i=1

n−i+1∑
j=1

j−

i∑
j=1

j

 =

(n+ 2)

bn
2 c∑

i=1

(n− 2i+ 1) −

bn
2 c∑

i=1

i(n− 2i+ 1)−

bn
2 c∑

i=1

(
(n− i+ 1)(n− i+ 2)

2
−
i(i+ 1)

2

)
=

(n+ 2)(n+ 1)

bn
2 c∑

i=1

1− 2(n+ 2)

bn
2 c∑

i=1

i− (n+ 1)

bn
2 c∑

i=1

i+ 2

bn
2 c∑

i=1

i2−

1

2

bn
2 c∑

i=1

(
(n+ 1)(n+ 2) − i(2n+ 3)+ 6 i2− 6 i2 − i)

)
=

(n+ 2)(n+ 1)

bn
2 c∑

i=1

1− (3n+ 5)

bn
2 c∑

i=1

i+ 2

bn
2 c∑

i=1

i2−

(n+ 1)(n+ 2)

2

bn
2 c∑

i=1

1+
(2n+ 4)

2

bn
2 c∑

i=1

i =

⌊n
2

⌋
(n+ 1)(n+ 2) − (3n+ 5)

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)

2
+ 2

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
) (
2
⌊

n
2

⌋
+ 1
)

6
−

1

2

⌊n
2

⌋
(n+ 1)(n+ 2) + (n+ 2)

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)

2
=⌊

n
2

⌋
(n+ 1)(n+ 2)

2
−

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
)
(2n+ 3)

2
+

⌊
n
2

⌋ (⌊
n
2

⌋
+ 1
) (
2
⌊

n
2

⌋
+ 1
)

3

27

When n is even, i.e. n = 2k for some k ∈ N+,
⌊n
2

⌋
= k and so

f(n) =
k(2k+ 1)(2k+ 2)

2
−
k(k+ 1)(4k+ 3)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)(4k+ 2) − k(k+ 1)(4k+ 3)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)

(
−
1

2
+
2k+ 1

3

)
=
k(k+ 1)(4k− 1)

6

When n is odd, i.e. n = 2k+ 1 for some k ∈ N,
⌊n
2

⌋
= k and so

f(n) =
k(2k+ 2)(2k+ 3)

2
−
k(k+ 1)(4k+ 5)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)(4k+ 6) − k(k+ 1)(4k+ 5)

2
+
k(k+ 1)(2k+ 1)

3
=

k(k+ 1)

(
1

2
+
2k+ 1

3

)
=
k(k+ 1)(4k+ 5)

6

Obviously, f(n) = Θ(n3). �

A5(n: positive integer)
1 a ← 0

2 for i ← 1 to n

3 for j ← i to n

4 for k ← n+ i+ j− 3 to n

5 a ← a+ 1

6 return a

Problem 32. Find the running time of algorithm A5 by determining the value of a it
returns as a function of n, f(n). Find a closed form for f(n).

Solution:
We have three nested for cycles and it is certainly true that f(n) = O(n3). However, now
f(n) 6= Θ(n3). It is easy to see that for any large enough n, line 5 is executed for only three
values of the ordered triple 〈i, j, k〉. Namely,

〈i, j, k〉 ∈
{
〈1, 1, n− 1〉,
〈1, 1, n〉,
〈1, 2, n− 1〉

}
because the condition in the innermost loop (line 5) requires that i + j ≤ 3. So, f(n) = 3,
thus f(n) = Θ(1). �
Problem 32 raises a question: does it make sense to compute the running time of an iterative
algorithm by counting how many time the expression in the innermost loop is executed?
At lines 2 and 3 of A5 there are condition evaluations and variable increments – can we
assume they take no time at all? Certainly, if that was a segment of a real-world program,
the outermost two loops would be executed Θ(n2) times, unless some sort of optimisation

28

was applied by the compiler. Anyway, we postulate that the running time is evaluated by
counting how many times the innermost loop is executed. Whether that is a realistic model
for real-world computation or not, is a side issue.

A6(a1, a2, . . . an: array of positive distinct integers, n ≥ 3)
1 S: a stack of positive integers
2 (∗ P(S) is a predicate that is evaluated in Θ(1) time. ∗)
3 (∗ If there are less than two elements in S then P(S) is false. ∗)
4 push(a1, S)

5 push(a2, S)

6 for i ← 3 to n

7 while P(S) do
8 pop(S)

9 push(ai, S)

Problem 33. Find the asymptotic growth rate of running time of A6. Assume the predicate
P is evaluated in Θ(1) time and the push and pop operations are executed in Θ(1) time.

Solution:
Certainly, the running time is O(n2) because the outer loop runs Θ(n) times and the inner
loop runs in O(n) time: note that for each concrete i, the inner loop (line 8) cannot be
executed more than n− 2 times sinse there are at most n elements in S and each execution
of line 8 removes one element from S.

However, a more precise analysis is possible. Observe that each element of the array is
being pushed in S and may be popped out of S later but only once. It follows that line 8
cannot be exesuted more than n times altogether, i.e. for all i, and so the algorithm runs
in Θ(n) time. �

A7(a1, a2, . . . an: array of positive distinct integers, x: positive integer)
1 i ← 1

2 j ← n

3 while i ≤ j do
4 k ← ⌊

i+j
2

⌋
5 if x = ak

6 return k

7 else if x < ak

8 j ← k− 1

9 else i ← k+ 1

10 return −1

Problem 34. Find the asymptotic growth rate of running time of A7.

Solution:
The following claim is a loop invariant for A7:

29

For every iteration of the while loop of A7, if the iteration number is t, t ≥ 0,
it is the case that:

j− i <
n

2t
(2.1)

We prove it by induction on t. The basis is t = 0, i.e. the first time the execution reaches
line 3. Then j is n, i is 1, and indeed n − 1 <

n

20
= n. Assume that at iteration t, t ≥ 1,

(2.1) holds. Consider iteration t+1. There are two ways to get from iteration t to iteration
t+ 1 and we consider them in separate cases.

Case I: we exit iteration t through line 8 In this case, j becomes
⌊
i+ j

2

⌋
− 1 and i

stays the same when going from iteration t to iteration t+ 1.

j− i

2
<

n

2t+1
directly from (2.1)

j+ i− 2i

2
<

n

2t+1

j+ i

2
− i <

n

2t+1⌊
j+ i

2

⌋
− 1︸ ︷︷ ︸

the new j

− i <
n

2t+1
since bmc− 1 ≤ m, ∀m ∈ R+

And so the induction step follows from the induction hypothesis.
Case II: we exit iteration t through line 9 In this case, j stays the same and i becomes⌊
i+ j

2

⌋
+ 1 when going from iteration t to iteration t+ 1.

j− i

2
<

n

2t+1
directly from (2.1)

2j− j− i

2
<

n

2t+1

j−
j+ i

2
<

n

2t+1

j−

(⌊
j+ i

2

⌋
+ 1

)
︸ ︷︷ ︸

the new i

<
n

2t+1
since bmc+ 1 ≥ m, ∀m ∈ R+

And so the induction step follows from the induction hypothesis.

Having proven (2.1), we see that 2t <
n

j− i
. It is obvious that j − i ≥ 1 at the beginning

of any iteration of the loop, so
n

j− i
≤ n, and therefore 2t < n ⇔ t < dlgne. Recall that

t is, after A7 finishes, the number of times the loop has been executed. It follows that the
running time of A7 is O(lgn). The logarithmic bound is not tight in general – obviously,
the best-case running time is Θ(1). The worst-case running time, however, isΩ(lgn), so the
worst case running time is Θ(lgn). Now we prove the worst-case running time is Ω(lgn).

The following claim is a loop invariant for A7:

30

For every iteration of the while loop of A7, if the iteration number is t, t ≥ 0,
it is the case that:

n

2t+1
− 4 < j− i (2.2)

We prove it by induction on t. The basis is t = 0, i.e. the first time the execution reaches
line 3. Then j is n, i is 1, and indeed

n

21+0
=
n

2
< n− 1, for large enough n. Assume that

at iteration t, t ≥ 1, (2.2) holds. Consider iteration t+ 1. There are two ways to get from
iteration t to iteration t+ 1 and we consider them in separate cases.

Case I: we exit iteration t through line 8 In this case, j becomes
⌊
i+ j

2

⌋
− 1 and i

stays the same when going from iteration t to iteration t+ 1.

n

2t+2
− 2 <

j− i

2
directly from (2.2)

n

2t+2
− 2 <

j+ i− 2i

2
n

2t+2
− 2 <

j+ i

2
− i

n

2t+2
− 4 <

j+ i

2
− 2− i

n

2t+2
− 4 <

⌊
j+ i

2

⌋
− 1︸ ︷︷ ︸

the new j

− i since m− 2 ≤ bmc− 1, ∀m ∈ R+

Case II: we exit iteration t through line 9 In this case, j stays the same and i becomes⌊
i+ j

2

⌋
+ 1 when going from iteration t to iteration t+ 1.

n

2t+2
− 2 <

j− i

2
n

2t+2
− 2 <

2j− j− i

2
n

2t+2
− 2 < j−

j+ i

2
n

2t+2
− 4 < j−

j+ i

2
− 2

n

2t+2
− 4 < j−

(
j+ i

2
+ 2

)
n

2t+2
− 4 < j−

(⌊
j+ i

2

⌋
+ 1

)
︸ ︷︷ ︸

the new i

since m+ 2 ≥ bmc+ 1, ∀m ∈ R+

Having proven (2.2), it is trivial to prove that in the worst case, e.g. when x is not in the
array, the loop is executed Ω(lgn) times. �

Problem 35. Determine the asymptotic running time of the following programming seg-
ment:

31

s = 0;

for(i = 1; i * i <= n; i ++)

for(j = 1; j <= i; j ++)

s += n + i - j;

return s;

Solution:
The segment is equivalent to:

s = 0;
for(i = 1; i <= floor(sqrt(n)); i ++)

for(j = 1; j <= i; j ++)
s += n + i - j;

return s;

As we already saw, the running time is Θ
((√

n
)2) and that is Θ(n). �

Problem 36. Assume that An×n, Bn×n, and Cn×n are matrices of integers. Determine
the asymptotic running time of the following programming segment:

for(i = 1; i <= n; i ++)

for(j = 1; j <= n; j ++) {
s = 0;

for(k = 1; k <= n; k ++)

s += A[i][k] * B[k][j];

C[i][j] = s; }
return s;

Solution:
Having in mind the analysis of Add-3 on page 23, clearly this is a Θ(n3) algorithm. How-
ever, if consider the order of growth as a function of the length of the input, the order of
growth is Θ

(
m

3
2

)
, where m is the length of the input, i.e. m is the order of the number

of elements in the matrices and m = Θ(n2). �

A8(a1, a2, . . . an: array of positive integers)
1 s ← 0

2 for i ← 1 to n− 4

3 for j ← i to i+ 4

4 for k ← i to j

5 s ← s+ ai

Problem 37. Determine the running time of algorithm A8.

Solution:
The outermost loop is executed n − 4 times (assume large enough n). The middle loop is
executed 5 times precisely. The innermost loop is executed 1, 2, 3, 4, or 5 times for j equal
to i, i+ 1, i+ 2, i+ 3, and i+ 4, respectively. Altogether, the running time is Θ(n). �

32

A9(n: positive integer)
1 s ← 0

2 for i ← 1 to n− 4

3 for j ← 1 to i+ 4

4 for k ← i to j

5 s ← s+ 1

6 return s

Problem 38. Determine the running time of algorithm A9. First determine the value it
returns as a function of n.

Solution:
We have to evaluate the sum:

n−4∑
i=1

i+4∑
j=1

j∑
k=i

1

Having in mind that

j∑
k=i

1 =

{
j− i+ 1, if j ≥ i
0, else

we rewrite the sum as:

n−4∑
i=1


i−1∑
j=1

j∑
k=i

1︸ ︷︷ ︸
this is 0

+

i+4∑
j=i

j∑
k=i

1

 =

n−4∑
i=1

i+4∑
j=i

(j− i+ 1) =

n−4∑
i=1

(
(i− i+ 1) + (i+ 1− i+ 1) + (i+ 2− i+ 1) + (i+ 3− i+ 1) + (i+ 4− i+ 1)

)
=

n−4∑
i=1

(1+ 2+ 3+ 4+ 5) = 15(n− 4)

Since the returned s is 15(n− 4), the algorithm runs in Θ(n) time. �

Our notations from Chapter 1 can be generalised for two variables as follows. A bivariate
function f(n,m) is asymptotically positive iff

∃n0∃m0 : ∀n ≥ n0∀m ≥ m0, f(n,m) > 0

33

Definition 2. Let g(n,m) be an asymptotically positive function with real domain and
codomain. Then

Θ(g(n,m)) =
{
f(n,m) | ∃c1, c2 > 0, ∃n0,m0 > 0 :

∀n ≥ n0,∀m ≥ m0, 0 ≤ c1.g(n,m) ≤ f(n,m) ≤ c2.g(n,m)
}

Pattern matching is a computational problem in which we are given a text and a pattern
and we compute how many times or, in a more elaborate version, at what shifts, the pattern
occurs in the text. More formally, we are given two arrays of characters T and P with lengths
n and m, respectively, such that n ≥ m. For any k, 1 ≤ k ≤ n−m+ 1, we have a shift at
position k iff:

T [k] =P[k]

T [k+ 1] =P[k+ 1]

. . .

T [k+m− 1] =P[k+m− 1]

The problem then is to determine all the valid shifts. Consider the following algorithm for
that problem.

Naive-Pattern-Mathing(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m+ 1

3 if T [i, i+ 1, . . . , i+m− 1] = P

4 print “shift at” i

Problem 39. Determine the running time of algorithm Naive-Pattern-Mathing.

Solution:
The algorithm is ostensibly Θ(n) because it has a single loop with the loop control variable
running from 1 to n. That analysis, however, is wrong because the comparison at line 3
cannot be performed in constant time. Have in mind thatm can be as long as n. Therefore,
the algorihm is in fact:

Naive-Pattern-Mathing-1(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m+ 1

3 Match ← True
4 for j ← 1 to m

5 if T [i+ j− 1] 6= P[j]

6 Match ← False
7 if Match
8 print “shift at” i

34

For obvious reasons this is a Θ((n − m).m) algorithm: both the best-case and the
worst-case running times are Θ((n−m).m)†. Suppose we improve it to:

Naive-Pattern-Mathing-2(T [1..n]: characters, P[1..m]: characters)
1 (∗ assume n ≥ m ∗)
2 for i ← 1 to n−m+ 1

3 Match ← True
4 j ← 1

5 while Match And j ≤ m do
6 if T [i+ j− 1] = P[j]

7 j ← j+ 1

8 else
9 Match ← False

10 if Match
11 print “shift at” i

Naive-Pattern-Mathing-2 has the advantage that once a mismatch is found (line 9)
the inner loop “breaks”. Thus the best-case running time is Θ(n). A best case, for instance,
is:

T = aa . . . a︸ ︷︷ ︸
n times

and P = bb . . . b︸ ︷︷ ︸
m times

However, the worst case running time is still Θ((n−m).m). A worst case is, for instance:

T = aa . . . a︸ ︷︷ ︸
n times

and P = aa . . . a︸ ︷︷ ︸
m times

It is easy to prove that (n −m).m is maximised when m varies and n is fixed for m ≈ n
2

and achieves maximum value Θ(n2). It follows that all the naive string matchings are, at
worst, quadratic algorithms. �

It is known that faster algorithms exist for the pattern matching problem. For instance,
the Knuth-Morris-Pratt [KMP77] algorithm that runs in Θ(n) in the worst case.

Problem 40. For any two strings x and y of the same length, we say that x is a circular
shift of y iff y can be broken into substrings—one of them possibly empty—y1 and y2:

y = y1 y2

such that x = y2 y1. Find a linear time algorithm, i.e. Θ(n) in the worst case, that computes
whether x is a circular shift of y or not. Assume that x 6= y.

Solution:
Run the linear time algorithm for string matching of Knuth-Morris-Pratt with input yy (y
concatenated with itself) as text and x as pattern. The algorithm will output one or more
valid shifts iff x is a circular shift of y, and zero valid shifts, otherwise. To see why, consider

†Algorithms that have the same—in asymptotic terms—running time for all inputs of the same length
are called oblivious.

35

the concatenation of y with itself when it is a circular shift of x for some y1 and y2, such
that y = y1 y2 and x = y2 y1:

y y = y1 y2 y1︸ ︷︷ ︸
this is x

y2

The running time is Θ(2n), i.e. Θ(n), at worst. �

36

Chapter 3

Recursive Algorithms and
Recurrence Relations

3.1 Preliminaries

A recursive algorithm is an algorithm that calls itself, one or more times on smaller inputs.
To prevent an infinite chain of such calls there has to be a value of the input for which the
algorithm does not call itself.

A recurrence relation in one variable is an equation, i.e. there is an “=” sign “in the
middle”, in which a function of the variable is equated to an expression that includes the
same function on smaller value of the variable. In addition to that for some basic value of
the variable, typically one or zero, an explicit value for the function is defined – that is the
initial condition†. The variable is considered by default to take nonnegative integer values,
although one can think of perfectly valid recurrence relations in which the variable is real.

Typically, in the part of the relation that is not the initial condition, the function of the
variable is written on the left-hand side of the “=” sign as, say, T(n), and the expression,
on the right-hand side, e.g. T(n) = T(n − 1) + 1. If the initial condition is, say, T(0) = 0,
we typically write:

T(n) = T(n− 1) + 1, ∀n ∈ N+ (3.1)
T(0) = 0

It is not formally incorrect to write the same thing as:

T(n− 1) = T(n− 2) + 1, ∀n ∈ N+, n 6= 1

T(0) = 0

The equal sign is interpreted as an assignment from right to left, just as the equal sign in
the C programming language, so the following “unorthodox” way of describing the same

†Note there can be more than one initial condition as in the case with the famous Fibonacci numbers:

F(n) = F(n − 1) + F(n − 2), ∀n ∈ N+
, n 6= 1

F(1) = 1

F(0) = 0

The number of initial conditions is such that the initial conditions prevent “infinite descent”.

37

relation is discouraged :

T(n− 1) + 1 = T(n), ∀n ∈ N+

0 = T(0)

Each recurrence relation defines an infinite numerical sequence, provided the variable
is integer. For example, (3.1) defines the sequence 0, 1, 2, 3, Each term of the relation,
except for the terms defined by the initial conditions, is defined recursively, i.e. in terms of
smaller terms, hence the name. To solve a recurrence relation means to find a non-recursive
expression for the same function – one that defines the same sequence. For example, the
solution of (3.1) is T(n) = n.

It is natural to describe the running time of a recursive algorithm by some recurrence
relation. However, since we are interested in asymptotic running times, we do not need the
precise solution of a “normal” recurrence relation as described above. A normal recurrence
relation defines a sequence of numbers. If the time complexity of an algorithm as a worst-
case analysis was given by a normal recurrence relation then the number sequence a1, a2,
a3, . . . , defined by that relation, would describe the running time of algorithm precisely,
i.e. for input of size n, the maximum number of steps the algorithm makes over all inputs
of size n is precisely an. We do not need such a precise analysis and often it is impossible
to derive one. So, the recurrence relations we use when analysing an algorithm typically
have bases Θ(1), for example:

T(n) = T(n− 1) + 1, n ≥ 2 (3.2)
T(1) = Θ(1)

Infinitely many number sequences are solutions to (3.2). To solve such a recurrence relation
means to find the asymptotic growth of any of those sequences. The best solution we can
hope for, asymptotically, is the one given by the Θ notation. If we are unable to pin down
the asymptotic growth in that sense, our second best option is to find functions f(n) and
g(n), such that f(n) = o(g(n)) and T(n) = Ω(f(n)) and T(n) = O(g(n)). The best solution
for the recurrence relation (3.2), in the asymptotic sense, is T(n) = Θ(n). Another solution,
not as good as this one, is, for example, T(n) = Ω(

√
n) and T(n) = O(n2).

In the problems that follow, we distinguish the two types of recurrence relation by the
initial conditions. If the initial condition is given by a precise expression as in (3.1) we have
to give a precise answer such as T(n) = n, and if the initial condition is Θ(1) as in (3.2) we
want only the growth rate.

It is possible to omit the initial condition altogether in the description of the recurrence.
If we do so we assume tacitly the initial condition is T(c) = Θ(1) for some positive constant
c. The reason to do that may be that it is pointless to specify the usual T(1); however,
it may be the case that the variable never reaches value one. For instance, consider the
recurrence relation

T(n) = T
(⌊n
2

⌋
+ 17

)
+ n

which we solve below (Problem 47 on page 52). To specify “T(1) = Θ(1)” for it is wrong.

3.1.1 Iterators

The recurrence relations can be partitioned into the following two classes, assuming T is
the function of the recurrence relations as above.

38

1. The ones in which T appears only once on the right-hand side as in (3.1).

2. The ones in which T appears mutiple times on the right-hand side, for instance:

T(n) = T(n− 1) + T(n− 2) + T(n− 3) + n (3.3)

We will call them relations with single occurrence and with multiple occurrences, respec-
tively. We find it helpful to make that distinction because in general only the relations with
single occurrence are ameaneable to the method of unfolding (see below). If the relation is
with single occurrence we define the iterator of the relation as the iterative expression that
shows how the variable decreases. For example, the iterator of (3.1) is:

n→ n− 1 (3.4)

It is not practical to define iterators for relations with multiple occurrences. If we wanted
to define iterators for them as well, they would have a set of functions on the right-hand
side, for instance the iterator of (3.3) would be

n→ {n− 1, n− 2, n− 3}

and that does help the analysis of the relation. So, we define iterators only for relations
with single occurrence. The iterators that are easiest to deal with (and, fortunately, occur
often in practice) are the ones in which the function on the right-hand side is subtraction
or division (by constant > 1):

n→ n− c, c > 0 (3.5)

n→ n

b
, b > 1 (3.6)

Another possibility is that function to be some root of n:

n→ d
√
n, d > 1 (3.7)

Note that the direction of the assignment in the iterator is the opposite to the one in
the recurrence relation (compare (3.1) with (3.4)). The reason is that a recurrence has to
phases: descending and ascending. In the descending phase we start with some value n
for the variable and decrease it in successive steps till we reach the initial condition; in
the ascending phase we go back from the initial condition “upwards”. The left-to-right
direction of the iterator refers to the descending phase, while the right-to-left direction of
the assignment in the recurrence refers to the ascending phase.

It is important to be able to estimate the number of times an iterator will be executed before
its variable becomes 1 (or whatever value the initial conditions specify). If the variable n
is integer, the iterator n→ n− 1 is the most basic one we can possibly have. The number
of times it is executed before n becomes any a priori fixed constant is Θ(n). That has to
be obvious. Now consider (3.5). We ask the same question: how many times it is executed
before n becomes a constant. Substitute n by cm and (3.5) becomes:

cm→ c(m− 1) (3.8)

39

The number of times (3.8) is executed (before m becomes a constant) is Θ(m). Since
m = Θ(n), we conclude that (3.5) is executed Θ(n) times.

Consider the iterator (3.6). To see how many times it is executed before n becomes
a constant (fixed a priori)) can be estimated as follows. Substitute n by bm and (3.6)
becomes

bm → bm−1 (3.9)

(3.9) is executed Θ(m) times because m → m − 1 is executed Θ(m) times. Since m =

logb n, we conclude that (3.6) is executed Θ(logb n) times, i.e. Θ(lgn) times. We see that
the concrete value of b is immaterial with respect to the asymptotics of the number of
executions, provided b > 1.

Now consider (3.7). To see how many times it is executed before n becomes a constant,
substitute n by ddm

. (3.7) becomes

ddm → d
dm

d = ddm−1
(3.10)

(3.10) is executed Θ(m) times. As m = logd logd n, we conclude that (3.7) is executed
Θ(logd logd n) times, i.e. Θ(lg lgn) times. Again we see that the value of the constant in
the iterator, namely d, is immaterial as long as d > 1.

Let us consider an iterator that decreases even faster than (3.7):

n→ lgn (3.11)

The number of times it is executed before n becomes a constant is lg∗ n, which follows right
from Definion 1 on page 11.

Let us summarise the rates of decrease of the iterators we just considered assuming the
mentioned “constants of decrease” b and d are 2.

iterator asymptotics of the number executions alternative form (see Definion 1)

n→ n− 1 n lg(0) n

n→ n/2 lgn lg(1) n

n→ √
n lg lgn lg(2) n

n→ lgn lg∗ n lg∗ n

There is a gap in the table. One would ask, what is the function f(n), such that the iterator
n → f(n) is executed, asymptotically, lg lg lgn times, i.e. lg(3) n times. To answer that
question, consider that f(n) has to be such that if we substitute n by 2m, the number
of executions is the same as in the iterator m → √

m. But m → √
m is the same as

lgn→ √
lgn, i.e. n→ 2

√
lg n. We conclude that f(n) = 2

√
lg n. To check this, consider the

iterator

n→ 2
√

lg n (3.12)

Substitute n by 222m

in (3.12) to obtain:

222m → 2

√
lg 222m

= 2
√

22m

= 22
2m

2
= 222m−1

(3.13)

Clearly, (3.13) is executed m = lg lg lgn = lg(3) n times.

40

A further natural question is, what the function φ(n) is, such that the iterator n→ φ(n)

is executed lg(4) n times. Applying the reasoning we used to derive f(n), φ(n) has to be
such that if we substitute n by 2m, the number of executions is the same as in m→ 2

√
lg m.

As m = lgn, the latter becomes lgn → 2
√

lg lg n, i.e. n → 22
√

lg lg n
. So, φ(n) = 22

√
lg lg n

.
We can fill in two more rows in the table:

iterator asymptotics of the number executions alternative form (see Definion 1)

n→ n− 1 n lg(0) n

n→ n/2 lgn lg(1) n

n→ √
n lg lgn lg(2) n

n→ 2
√

lg n lg lg lgn lg(3) n

n→ 22
√

lg lg n
lg lg lg lgn lg(4) n

n→ lgn lg∗ n lg∗ n

Let us define, analogously to Definion 1, the function base-two iterated exponent.

Definition 3 (iterated exponent). Let i be a nonnegative integer.

itexp(i)(n) =

{
n, if i = 0

2itexp(i−1)(n), if i > 0
�

Having in mind the results in the table, we conjecture, and it should not be too difficult to
prove by induction, that the iterator:

n→ itexp(k)

(√
lg(k) n

)
(3.14)

is executed lg(k+2) n times for k ∈ N.

3.1.2 Recursion trees

Assume we are given a recurrence relation of the form:

T(n) = k1T(f1(n)) + k2T(f2(n)) + . . .+ kpT(fp(n)) + φ(n) (3.15)

where ki, i ≤ i ≤ p are positive integer constants, fi(n) for 1 ≤ i ≤ p are integer-valued
functions such that n > f(n) for all n ≥ n0 where n0 is the largest (constant) value of the
argument in any initial condition, and φ(n) is some positive function. It is not necessary
φ(n) to be positive as the reader will see below; however, if T(n) describes the running
time of a recursive algorithm then φ(n) has to be positive. We build a special kind of
rooted tree that corresponds to our recurrence relation. Each node of the tree corresponds
to one particular value of the variable that appears in the process of unfolding the relation,
the value that corresponds to the root being n. That value we call the level of the node.
Further, with each node we associate φ(m) where m is the level of that node. We call that,
the cost of the node. Further, each node—as long as no initial condition has been reached
yet—has k1 + k2 + . . . + kp children, ki of them being at level defined by fi for 1 ≤ i ≤ p.
For example, if our recurrence is

T(n) = 2T(n− 1) + n2

41

cost (n − 2)2cost (n − 2)2 cost (n − 2)2 cost (n − 2)2

cost (n− 1)2 cost (n− 1)2level n− 1

level n− 2

level n cost n2

Figure 3.1: The recursion tree of T(n) = 2T(n− 1) + n2.

the recursion tree is as shown on Figure 3.1. It is a complete binary tree. It is binary
because there are two invocations on the right side, i.e. k1 + k2 + . . .+ kp = 2 in the above
terminology. And it is complete because it is a recurrence with a single occurrence. Note
that if k1 + k2 + . . .+ kp equals 1 then the recursion tree degenerates into a path.

The size of the tree depends on n so we can not draw the whole tree. The figure is
rather a suggestion about it. The bottom part of the tree is missing because we have not
mentioned the initial conditions. The solution of the recursion—and that is the goal of the
tree, to help us solve the recursion—is the total sum of all the costs. Typically we sum by
levels, so in the current example the sum will be

n2 + 2(n− 1)2 + 4(n− 2)2 + . . .

The general term of this sum is 2k(n− k)2. The “. . . ” notation hides what happens at the
right end, however, we agreed the initial condition is for some, it does not matter, what
constant value of the variable. Therefore, the sum

n∑
k=0

2k(n− k)2

has the same growth rate as our desired solution. Let us find a closed form for that sum.
n∑

k=0

2k(n− k)2 = n2
n∑

k=0

2k − 2n

n∑
k=0

2kk+

n∑
k=0

2kk2

Having in mind Problem 81 on page 88 and Problem 82 on page 88, that expression becomes

n2(2n+1 − 1) − 2n((n− 1)2n+1 + 2) + n22n+1 − 2n2n+1 + 4.2n+1 − 6 =

n2.2n+1 − n2 − 2n(n.2n+1 − 2n+1 + 2) + n22n+1 − 2n2n+1 + 4.2n+1 − 6 =

2.n2.2n+1 − n2 − 2.n2.2n+1 + 2n.2n+1 − 4n− 2n2n+1 + 4.2n+1 − 6 =

4.2n+1 − n2 − 4n− 6

42

level n− 1

level n− 2

level n 1

1

1 1

111

1 1 1 1 1 1 1 1
level n− 3

Figure 3.2: The recursion tree of T(n) = 2T(n− 1) + 1.

It follows that T(n) = Θ(2n).

The correspondence between a recurrence relation and its recursion tree is not necessarily
one-to-one. Consider the recurrence relation (3.2) on page 38 and its recursion tree (Fig-
ure 3.2). The cost at level n is 1, at level n− 1 is 2, at level n− 2 is 4, at level n− 3 is 8,
etc. The tree is obviously complete. Let us now rewrite (3.2) as follows.

T(n) = 2T(n− 1) + 1 ⇔ T(n) = T(n− 1) + T(n− 1) + 1

T(n− 1) = 2T(n− 2) + 1

T(n) = T(n− 1) + 2T(n− 2) + 2

We have to alter the initial conditions for this rewrite, adding T(2) = 3. Overall the
recurrence becomes

T(n) = T(n− 1) + 2T(n− 2) + 2 (3.16)
T(2) = 3

T(1) = 1

Recurrences (3.2) and (3.16) are equivalent. One can say these are different ways of writing
down the same recurrence because both of them define one and the same sequence, namely
1, 3, 7, 15, . . . However, their recursion trees are neither the same nor isomorphic. Figure 3.3
shows the tree of (3.16). To give a more specific example, Figure 3.4 shows the recursion
tree of (3.16) for n = 5. It shows the whole tree, not just the top, because the variable has
a concrete value. Therefore the initial conditions are taken into account. The reader can
easily see the total sum of the costs over the tree from Figure 3.4 is 31, the same as the tree

43

level n− 1

level n− 2

level n 2

2

2

22

2 2 2 2 2
level n− 3

Figure 3.3: The recursion tree of T(n) = T(n− 1) + 2T(n− 2) + 2.

2

2

2

22

3 3 3 3 3

11 1 1 1 1

Figure 3.4: The recursion tree of T(n) = T(n − 1) + 2T(n − 2) + 2, T(2) = 3,
T(1) = 1, for n = 5.

44

from Figure 3.2 for n = 5. However, the sum 31 on Figure 3.2 is obtained as 1+2+4+8+16,
if we sum by levels. In the case with Figure 3.4 we do not have obvious definition of levels.

• If we define the levels as the vertices that have the same value of the variable, we have
5 levels and the sum is derived, level-wise, as 2+ 2+ 6+ 15+ 6 = 31.

• If we define the levels as the vertices that are at the same distance to the root, we
have only 4 levels and the sum is derived, level-wise, as 2+ 6+ 18+ 5 = 31.

Regardless of how we define the levels, the derivation is not 1+ 2+ 4+ 8+ 16.

3.2 Problems

Our repertoire of methods for solving recurrences is:

• by induction,

• by unfolding,

• by considering the recursion tree,

• by the Master Theorem, and

• by the method of the characteristic equation.

3.2.1 Induction, unfolding, recursion trees

Problem 41. Solve

T(n) = 2T(n− 1) + 1 (3.17)
T(0) = 0

Solution:
We guess that T(n) = 2n − 1 for all n ≥ 1 and prove it by induction on n.

Basis: n = 1. We have T(1) = 2T(0) + 1 by substituting n with 1. But T(0) = 0, thus
T(1) = 2× 0+ 1 = 1. On the other hand, substituting n with 1 in our guessed solution, we
have 21 − 1 = 1.

Inductive hypothesis: assume T(n) = 2n − 1 for some n > 1.

Inductive step: T(n+1) = 2T(n)+1 by definition. Apply the inductive hypothesis to obtain
T(n+ 1) = 2 (2n − 1) + 1 = 2n+1 − 1. �
The proofs by induction have one major drawback – making a good guess can be a form of
art. There is no recipe, no algorithm for making a good guess in general. It makes sense
to compute several initial values of the sequence defined by the recurrence and try to see
a pattern in them. In the last problem, T(1) = 1, T(2) = 3, T(3) = 7 and it is reasonable
to assume that T(n) is 2n − 1. Actually, if we think about (3.17) in terms of the binary
representation of T(n), it is pretty easy to spot that (3.17) performs a shift-left by one

45

position and then turns the least significant bit from 0 into 1. As we start with T(1) = 1,
clearly

T(n) = 1 1 1 . . . 1︸ ︷︷ ︸
n times

b

For more complicated recurrence relations, however, seeing a pattern in the initial values
of the sequence, and thus making a good guess, can be quite challenging. If one fails to
see such a pattern it is a good idea to check if these numbers are found in The On-Line
Encyclopedia of Integer Sequences [Slo]. Of course, this advice is applicable when we solve
precise recurrence relations, not asymptotic ones.

Problem 42. Solve by unfolding

T(n) = T(n− 1) + n (3.18)
T(0) = 1

Solution:
By unfolding (also called unwinding) of the recurrence down to the initial condition.

T(n) = T(n− 1) + n directly from (3.18)

= T(n− 2) + n− 1+ n substitute n with n− 1 in (3.18)

= T(n− 3) + n− 2+ n− 1+ n substitute n− 1 with n− 2 in (3.18)

. . .

= T(0) + 1+ 2+ 3+ . . .+ n− 2+ n− 1+ n =

= 1+ 1+ 2+ 3+ . . .+ n− 2+ n− 1+ n =

= 1+
n(n+ 1)

2

This method is considered to be not as formally precise as the induction. The reason is
that we inevitably skip part of the derivation—the dot-dot-dot “. . . ” part—leaving it to
the imagination of the reader to verify the derived closed formula. Problem 42 is trivially
simple and it is certain beyond any doubt that if we start with T(n− 3)+n− 2+n− 1+n

and systematically unfold T(i), decrementing by one values of i, eventually we will “hit”
the initial condition T(0) and the “tail” will be 1 + 2 + 3 + . . . + n − 2 + n − 1 + n. The
more complicated the expression is, however, the more we leave to the imagination of the
reader when unfolding.

One way out of that is to use the unfolding to derive a closed formula and then prove it
by induction. �

Problem 43. Solve

T(n) = 2T
(⌊n
2

⌋)
+ n (3.19)

T(1) = Θ(1) (3.20)

46

Solution:
We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(n lgn) and T(n) = Ω(n lgn).

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.21)

There is a potential problem with the initial condition because for n = 1 the right-hand
side of (3.21) becomes c.1. lg 1 = 0, and 0 6= Θ(1). However, it is easy to deal with that
issue, just do not take n = 1 as basis. Taking n = 2 as basis works as c.2. lg 2 is not zero.
However, note that n = 2 is not sufficient basis! There are certain values for n, for example
3, such that the iterator of this recurrence, namely

n→ ⌊n
2

⌋
“jumps over” 2, having started from one of them. Indeed,

⌊
3
2

⌋
= 1, therefore the iterator,

starting from 3, does

3→ 1

and then goes infinite descent. The solution is to take two bases, for both n = 2 and n = 3.
It is certain that no matter what n is the starting one, the iterator will at one moment
“hit” either 2 or 3. So, the bases of our proof are:

T(2) = Θ(1) (3.22)
T(3) = Θ(1) (3.23)

Of course, that does not say that T(2) = T(3), it says there exist constants c2 and c3, such
that:

c2 ≤ c.2 lg 2
c3 ≤ c.3 lg 3

Our induction hypothesis is that relative to some sufficiently large n, (3.21) holds for some
positive constant c all values of the variable between 3 and n, excluding n. The induction
step is to prove (3.21), using the hypothesis. So,

T(n) = 2T
(⌊n
2

⌋)
+ n this is the defintion of T(n)

≤ 2.c.
⌊n
2

⌋
lg
⌊n
2

⌋
+ n from the inductive hypothesis

≤ 2.c.n
2

lg
n

2
+ n

= cn(lgn− 1) + n

= cn lgn+ (1− c)n (3.24)
≤ cn lgn provided that (1− c) ≤ 0 ⇔ c ≥ 1 (3.25)

47

If c ≥ 1, the proof is valid. If we want to be perfectly precise we have to consider the two
bases as well to find a value for c that works. Namely,

c = max
{
1,

c2

2 lg 2
,
c3

3 lg 3

}
In our proofs from now on we will not consider the initial conditions when choosing an
appropriate constant.

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn (3.26)

We will ignore the basis of the induction and focus on the hypothesis and the inductive step
only. Applying the inductive hypothesis to (3.26), we get:

T(n) ≥ 2d
⌊n
2

⌋
lg
⌊n
2

⌋
+ n from the inductive hypothesis

≥ 2d
(n
2

− 1
)

lg
⌊n
2

⌋
+ n

= d(n− 2) lg
⌊n
2

⌋
+ n

≥ d(n− 2) lg
(n
4

)
+ n

= d(n− 2) (lgn− 2) + n

= dn lgn+ n(1− 2d) − 2d lgn+ 4d

≥ dn lgn provided that n(1− 2d) − 2d lgn+ 4d ≥ 0

So (3.26) holds when

n(1− 2d) − 2d lgn+ 4d ≥ 0 (3.27)

Observe that for d = 1
4 inequality (3.27) becomes

n

2
+ 1 ≥ 1

2
lgn

It certainly holds ∀n ≥ 2, therefore the choice d = 1
4 and n1 = 2 suffices for our proof. �

Problem 44. Solve

T(n) = 2T
(⌈n
2

⌉)
+ n (3.28)

T(1) = Θ(1) (3.29)

Solution:
We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(n lgn) and T(n) = Ω(n lgn). We ignore the basis of the induction – the
solution of Problem 43 gives us enough confidence that we can handle the basis if we wanted
to.

48

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.30)

From the inductive hypothesis

T(n) ≤ 2.c.
⌈n
2

⌉
lg
⌈n
2

⌉
+ n

≤ 2.c.
(n
2

+ 1
)

lg
⌈n
2

⌉
+ n (3.31)

≤ 2.c.
(n
2

+ 1
)

lg
(
3n

4

)
+ n because

3n

4
≥
⌈n
2

⌉
∀n ≥ 2 (3.32)

= c(n+ 2)(lgn+ lg 3− 2) + n

= cn lgn+ cn(lg 3− 2) + 2c lgn+ 2c(lg 3− 2) + n

≤ cn lgn if cn(lg 3− 2) + 2c lgn+ 2c(lg 3− 2) + n ≤ 0

Consider

cn(lg 3− 2) + 2c lgn+ 2c(lg 3− 2) + n = (c(lg 3− 2) + 1)n+ 2c lgn+ 2c(lg 3− 2)

Its asymptotic growth rate is determined by the linear term. If the constant c(lg 3− 2) + 1

is negative then the whole expression is certainly negative for all sufficiently large values of
n. In other words, for the sake of brevity we do not specify precisely what n0 is. In order
to have c(lg 3− 2) + 1 < 0 it must be the case that c > 1

2−lg 3 . So, any c > 1
2−lg 3 works for

our proof.

In (3.31) we substitute
⌈

n
2

⌉
with 3n

4 . We could have used any other fraction pn
q , provided❢❢ NB ❢❢

that 1
2 <

p
q < 1. It is easy to see why it has to be the case that 1

2 <
p
q : unless that is fulfilled

we cannot claim there is a “≤” inequality between (3.31) and (3.32). Now we argue it has
to be the case that p

q < 1. Assume that p
q = 1, i.e., we substitute

⌈
n
2

⌉
with n. Then (3.32)

becomes:

c(n+ 2)(lgn) + n = cn lgn+ 2c lgn+ n

Clearly, that is bigger than cn lgn for all sufficiently large n and we have no proof.

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn (3.33)

From the inductive hypothesis

T(n) ≥ 2.d.
⌈n
2

⌉
lg
⌈n
2

⌉
+ n

≥ 2.d.
(n
2

)
lg
(n
2

)
+ n

= dn(lgn− 1) + n

= dn lgn+ (1− d)n

≥ dn lgn provided that (1− d)n ≥ 0 (3.34)

49

It follows that any d such that 0 < d ≤ 1 works for our proof. �

As explained in [CLR00, pp. 56–57], it is easy to make a wrong “proof” of the growth rate by❢❢ NB ❢❢

induction if one is not careful. Suppose one “proves” the solution of (3.19) is T(n) = O(n)

by first guessing (incorrectly) that T(n) ≤ cn for some positive constant c and then arguing

T(n) ≤ 2c
⌊n
2

⌋
+ n

≤ cn+ n

= (c+ 1)n

= O(n)

While it is certainly true that cn + n = O(n), that is irrelevant to the proof. The proof
started relative to the constant c and has to finish relative to it. In other words, the proof has
to show that T(n) ≤ cn for the choice of c in the inductive hypothesis, not that T(n) ≤ dn
for some positive constant d which is not c. Proving that T(n) ≤ (c+1)n does not constitute
a proof of the statement we are after.

Problem 45. Solve

T(n) = T
(⌊n
2

⌋)
+ 1 (3.35)

T(1) = Θ(1) (3.36)

Solution:
We prove that T(n) = Θ(lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn).

Part I: Proof that T(n) = O(lgn), that is, there exists a positive constant c and some n0,
such that for all n ≥ n0,

T(n) ≤ c lgn (3.37)

By the inductive hypothesis,

T(n) ≤ c lg
(⌊n
2

⌋)
+ 1

≤ c lg
(n
2

)
+ 1

= c(lgn− 1) + 1

= c lgn+ 1− c

≤ c lgn provided that 1− c ≤ 0⇔ c ≥ 1

Part II: Proof that T(n) = Ω(lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ d lgn (3.38)

50

By the inductive hypothesis,

T(n) ≥ d lg
(⌊n
2

⌋)
+ 1

≥ d lg
(n
4

)
+ 1 since

n

4
≤
⌊n
2

⌋
for all sufficiently large n

= d lgn− 2d+ 1

≥ d lgn provided that − 2d+ 1 ≥ 0 ⇔ d ≤ 1

2

�

Problem 46. Solve

T(n) = T
(⌈n
2

⌉)
+ 1 (3.39)

T(1) = Θ(1) (3.40)

Solution:
We prove that T(n) = Θ(lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn).

Part I: Proof that T(n) = O(lgn), that is, there exists a positive constant c and some n0,
such that for all n ≥ n0,

T(n) ≤ c lgn (3.41)

By the inductive hypothesis,

T(n) ≤ c lg
(⌈n
2

⌉)
+ 1

≤ c lg
(
3n

4

)
+ 1

= c(lgn+ lg 3− 2) + 1

= c lgn+ c(lg 3− 2) + 1

≤ c lgn provided that c(lg 3− 2) + 1 ≤ 0⇔ c ≥ 1

2− lg 3

Part II: Proof that T(n) = Ω(lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ d lgn (3.42)

By the inductive hypothesis,

T(n) ≥ d lg
(⌈n
2

⌉)
+ 1

≥ d lg
(n
2

)
+ 1

= d lgn− d+ 1

≥ d lgn provided that − d+ 1 ≥ 0 ⇔ d ≤ 1

�

51

Problem 47. Solve

T(n) = 2T
(⌊n
2

+ 17
⌋)

+ n (3.43)

Solution:
We prove that T(n) = Θ(n lgn) by induction on n. To accomplish that we prove separately
that T(n) = O(lgn) and T(n) = Ω(lgn). Note that the initial condition in this problem is
not T(1) = Θ(1) because the iterator

n→ ⌊n
2

⌋
+ 17

never reaches 1 when starting from any sufficiently large n. Its fixed point is 34 but we
avoid mentioning the awkward initial condition T(34) = Θ(1).

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c and some
n0, such that for all n ≥ n0,

T(n) ≤ cn lgn (3.44)

By the inductive hypothesis,

T(n) ≤ 2c
(⌊n
2

⌋
+ 17

)
lg
(⌊n
2

⌋
+ 17

)
+ n

= 2c
(n
2

+ 17
)

lg
(n
2

+ 17
)

+ n

= c(n+ 34) lg
(
n+ 34

2

)
+ n

= c(n+ 34)
(
lg (n+ 34) − 1

)
+ n

≤ c(n+ 34)
(
lg (

√
2n) − 1

)
+ n (3.45)

because for all sufficiently large values of n, say n ≥ 100, it is the case that
√
2n ≥ n+ 34.

T(n) ≤ c(n+ 34)
(
lg (

√
2n) − 1

)
+ n from (3.45)

= c(n+ 34)

(
lgn+

1

2
lg 2− 1

)
+ n

= c(n+ 34)

(
lgn−

1

2

)
+ n

= cn lgn+ 34c lgn−
cn

2
− 17c+ n

≤ cn lgn provided that 34c lgn−
cn

2
− 17c+ n ≤ 0

In order 34c lgn − cn
2 − 17c + n = n

(
1− c

2

)
+ 34c lgn − 17c to be non-positive for all

sufficiently large n it suffices
(
1− c

2

)
to be negative because the linear function dominated

the logarithmic function. A more detailed analysis is the following. Fix c = 4. The
expression becomes (−1)n+ 136 lgn− 136.

(−1)n+ 136 lgn− 136 ≤ 0 ⇔ n ≥ 136(lgn− 1) ⇔ n

lgn− 1
≥ 136

52

For n = 65536 = 216 the inequality holds:

216

15
≥ 136

so we can finish the proof with choosing n0 = 65536 and c = 4.

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d and some
n1, such that for all n ≥ n1,

T(n) ≥ dn lgn

By the inductive hypothesis,

T(n) ≥ 2d
(⌊n
2

⌋
+ 17

)
lg
(⌊n
2

⌋
+ 17

)
+ n

≥ 2d
(⌊n
2

⌋)
lg
(⌊n
2

⌋)
+ n

≥ 2d
(n
2

)
lg
(n
2

)
+ n

= dn(lgn− 1) + n

= dn lgn+ (1− d)n

≥ dn lgn provided that 1− d ≥ 0 ⇔ d ≤ 1 �

Problem 48. Solve

T(n) = 2T
(n
2

)
+ 1 (3.46)

T(1) = Θ(1)

by the method of the recursion tree.

Solution:
The recursion tree is shown on Figure 3.5. The solution is the sum over all levels:

T(n) = 1+ 2+ 4+ 8+ . . .︸ ︷︷ ︸
the number of terms is the height of the tree

(3.47)

The height of the tree is the number of times the iterator

n→ n

2

is executed before the variable becomes 1. As we already saw, that number is lgn†. So,
(3.47) in fact is

T(n) = 1+ 2+ 4+ 8+ . . .︸ ︷︷ ︸
(lg n+1) terms

= 1+ 2+ 4+ 8+ . . .+
n

2
+ n

=

lg n∑
i=0

n

2i
= n

(
lg n∑
i=0

1

2i

)
≤ n

(∞∑
i=0

1

2i

)
︸ ︷︷ ︸

2

= 2n

†Actually it is blg nc but that is immaterial with respect to the asymptotic growth of T(n).

53

level
n

2

level
n

4

level n

level
n

8

1 1 1 1

1 1

1 1 1 1 1 1 1 1

1 1

2

4

8

Figure 3.5: The recursion tree of T(n) = 2T
(

n
2

)
+ 1.

We conclude that T(n) = Θ(n). �

However, that proof by the method of the recursion tree can be considered insufficiently
precise because it involves several approximations and the use of imagination—the dot-dot-
dot notations. Next we demonstrate a proof by induction of the same result. We may think
of the proof with recursion tree as a mere way to derive a good guess to be verified formally
by induction.

Problem 49. Prove by induction on n that the solution to

T(n) = 2T
(n
2

)
+ 1 (3.48)

T(1) = Θ(1)

is T(n) = Θ(n).

Solution:
We prove separately that T(n) = O(n) and T(n) = Ω(n).

Part I: Proof that T(n) = O(n). For didactic purposes we will first make an unsuccessful
attempt.

Part I, try 1: Assume there exists a positive constant c and some n0, such that for all
n ≥ n0,

T(n) ≤ cn (3.49)

54

By the inductive hypothesis,

T(n) ≤ 2cn
2

+ 1

= cn+ 1

Our proof ran into a problem: no matter what positive c we choose, it is not true that
cn + 1 ≤ cn, and thus (3.49) cannot be shown to hold. Of course, that failure does not
mean our claim T(n) = Θ(n) is false. It simply means that (3.49) is inappropriate. We
amend the situation by a technique known as strenthening the claim. It consists of stating an
appropriate claim that is stronger than (3.49) and then proving it by induction. Intuitively,
that stronger claim has to contain some minus sign in such a way that after applying the
inductive hypothesis, there is a term like −c that can “cope with” the +1.

Part I, try 2: Assume there exists positive constants b and c and some n0, such that for
all n ≥ n0,

T(n) ≤ cn− b (3.50)

By the inductive hypothesis,

T(n) ≤ 2
(
c
n

2
− b
)

+ 1

= cn− 2b+ 1

≤ cn− b for any b such that − b+ 1 ≤ 0 ⇔ b ≥ 1

Part II: Proof that T(n) = Ω(n), that is, there exists a positive constant d and some n1,
such that for all n ≥ n1,

T(n) ≥ dn

By the inductive hypothesis,

T(n) ≥ 2
(
d
n

2

)
+ 1

= dn+ 1

≥ dn

�

Problem 50. Prove by induction on n that the solution to

T(n) = 2T(n− 1) + n (3.51)
T(1) = Θ(1)

is T(n) = Θ(2n).

55

Solution:
We prove separately that T(n) = O(2n) and T(n) = Ω(2n).

Part I: Proof that T(n) = O(2n). For didactic purposes we will first make several unsuc-
cessful attempts.

Part I, try 1: Assume there exists a positive constant c such that for all large enough n,

T(n) ≤ c2n

By the inductive hypothesis,

T(n) ≤ 2c2n−1 + n

= c2n + n

6≤ c2n for any choice of positive c

Our proof failed so let us strenghten the claim.

Part I, try 2: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n − b

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − b) + n

= c2n − 2b+ n

6≤ c2n − b for any choice of positive c

The proof failed once again so let us try another strenghtening of the claim.

Part I, try 3: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n−b

By the inductive hypothesis,

T(n) ≤ 2(c2n−b−1) + n

= c2n−b + n

6≤ c2n−b for any choice of positive c

Yet another failure and we try yet another strenghtening of the claim.

Part I, try 4: Assume there exists a positive constant c such that for all large enough n,

T(n) ≤ c2n − n

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − (n− 1)) + n

= c2n − n+ 2

6≤ c2n − n for any choice of positive c

56

Part I, try 5: Assume there exist positive constants b and c such that for all large enough
n,

T(n) ≤ c2n − bn

By the inductive hypothesis,

T(n) ≤ 2(c2n−1 − b(n− 1)) + n

= c2n − 2bn+ 2b+ n

= c2n − bn+ (1− b)n+ 2b

≤ c2n − bn for any choice of c > 0 and b > 1

Sucess! At last we have managed to formulate a provable hypothesis.

Part II: Proof that T(n) = Ω(n), that is, there exists a positive constant d such that for
all sufficiently large n,

T(n) ≥ d2n

By the inductive hypothesis,

T(n) ≥ 2(d2n−1) + n

= d2n + n

≥ d2n

Success! Again we see that the strengthening of the claim is required only in one direction
of the proof. �

The next three problems have the iterator

n→ √
n

According to the table on page 41, that number of times this iterator is executed before
n becomes some fixed constant is Θ(lg lgn). Note, however, that unless n is integer, this
constant cannot be 1 because for real n, it is the case that n > 1 after any iteration.
Therefore “T(1) = Θ(1)” cannot be the initial condition if n is real. One way out of that is
to change the initial conditions to

T(n) = Θ(1) for 2 ≤ n ≤ 4

Problem 51. Solve

T(n) = 2T(
√
n) + 1 (3.52)

Solution:
Substitute n by 22m

, i.e. m = lg lgn and 2m = lgn. Then (3.52) becomes

T
(
22m

)
= 2T

(
2

2m

2

)
+ 1

57

which is

T
(
22m

)
= 2T

(
22m−1

)
+ 1 (3.53)

Further substitute T
(
22m)

by S(m) and (3.53) becomes

S(m) = 2S(m− 1) + 1 (3.54)

But we know the solution to that recurrence. According to Problem 41, S(m) = Θ(2m).
Let us go back now to the original n and T(n).

S(m) = Θ(2m) ⇔ T
(
22m

)
= Θ(lgn) ⇔ T(n) = Θ(lgn)

�

Problem 52. Solve

T(n) = 2T(
√
n) + lgn (3.55)

Solution:
Substitute n by 2m, i.e. m = lgn. Then (3.55) becomes

T (2m) = 2T
(
2

m
2

)
+m (3.56)

Further substitute T (2m) by S(m) and (3.56) becomes

S(m) = 2S
(m
2

)
+m (3.57)

Consider Problem 43 and Problem 44. They have solve the same recurrence, differing from
(3.57) only in the way the division is rounded to integer. In Problem 43 the iterator is

n→ ⌊n
2

⌋
and in Problem 44 the iterator is

n→ ⌈n
2

⌉
Both Problem 43 and Problem 44 have Θ(n lgn) solutions. We conclude the solution of
(3.57) is S(m) = Θ(m lgm), which is equivalent to T(n) = Θ(lgn lg lgn). �

Problem 53. Solve

T(n) =
√
nT(

√
n) + n (3.58)

58

Solution:
Let us unfold the recurrence:

T(n) = n+ n
1
2 T
(
n

1
2

)
(3.59)

= n+ n
1
2

(
n

1
2 + n

1
4 T
(
n

1
4

))
(3.60)

= 2n+ n
3
4 T
(
n

1
4

)
(3.61)

= 2n+ n
3
4

(
n

1
8 + T

(
n

1
8

))
(3.62)

= 3n+ n
7
8 T
(
n

1
8

)
(3.63)

. . . (3.64)

= in+ n

(
1− 1

2i

)
T
(
n

1

2i

)
(3.65)

As we already said, the maximum value of i, call it imax, is imax = lg lgn. But then
2imax = lgn, therefore

n

(
1− 1

2imax

)
=

n

n
1

2imax

=
n

n
1

lg n

=
n

2

The derivation of the fact that n
1

lg n = 2 is on page 15. So, for i = imax,

T(n) = (lg lgn)n+
n

2
T(c) c is some number such that 2 ≤ c ≤ 4

But T(c) is a constant, therefore T(n) = Θ(n lg lgn).

Let us prove the same result by induction.
Part 1: Prove that T(n) = O(n lg lgn), that is, there exists a positive constant c such
that for all sufficiently large n,

T(n) ≤ cn lg lgn (3.66)

Our inductive hypothesis then is

T(
√
n) ≤ c

√
n lg lg

√
n (3.67)

We know by the definition of the problem that

T(n) =
√
nT(

√
n) + n (3.68)

Apply (3.67) to (3.68) to get

T(n) ≤
√
n(c

√
n lg lg

√
n) + n

= cn lg lg
√
n+ n

= cn lg
(
1

2
lgn

)
+ n

= cn lg
(

lgn
2

)
+ n

= cn(lg lgn− 1) + n

= cn lg lgn− cn+ n

≤ cn lg lgn provided that − cn+ n ≤ 0 ⇔ c ≥ 1

59

Part 2: Prove that T(n) = Ω(n lg lgn), that is, there exists a positive constant d such
that for all sufficiently large n,

T(n) ≥ dn lg lgn (3.69)

Our inductive hypothesis then is

T(
√
n) ≥ d

√
n lg lg

√
n (3.70)

We know by the definition of the problem that

T(n) =
√
nT(

√
n) + n (3.71)

Apply (3.70) to (3.71) to get

T(n) ≥
√
n(d

√
n lg lg

√
n) + n

= dn lg lg
√
n+ n

= dn lg
(
1

2
lgn

)
+ n

= dn lg
(

lgn
2

)
+ n

= dn(lg lgn− 1) + n

= dn lg lgn− dn+ n

≥ dn lg lgn provided that − dn+ n ≥ 0 ⇔ d ≤ 1

�

Problem 54. Solve by unfolding

T(n) = T(n− 2) + 2 lgn (3.72)

Solution:
Let us unfold the recurrence:

T(n) = T(n− 2) + 2 lgn
= T(n− 4) + 2 lg (n− 2) + 2 lgn
= T(n− 6) + 2 lg (n− 4) + 2 lg (n− 2) + 2 lgn
= . . .

= T(c) + . . .+ 2 lg (n− 4) + 2 lg (n− 2) + 2 lgn (3.73)

where c is either 1 or 2†.

Case I: n is odd. Then c = 1 and (3.73) is:

2 lgn+ 2 lg (n− 2) + 2 lg (n− 4) + . . .+ 2 lg 3+ T(1) (3.74)

†The initial conditions that define T(1) and T(2) are omitted.

60

We approximate T(1) with 0 = lg 1, which does not alter the asymptotic growth rate of
(3.74), and thus (3.74) becomes:

lgn2 + lg (n− 2)2 + lg (n− 4)2 + . . .+ lg 32 + lg 1 =

lg
(
n2(n− 2)2(n− 4)2 . . . 32.1

)
=

lg
(
n.n(n− 2)(n− 2)(n− 4)(n− 4) . . . 5.5.3.3.1︸ ︷︷ ︸

n factors

)
= T(n) (3.75)

Define

X(n) = lg
(
n(n− 1)(n− 2)(n− 3) . . . 3.2.1︸ ︷︷ ︸

n factors

)
= lgn!

Y(n) = lg
(

(n+ 1)n(n− 1)(n− 2) . . . 4.3.2︸ ︷︷ ︸
n factors

)
= lg (n+ 1)!

and note that

X(n) ≤ T(n) ≤ Y(n) (3.76)

because of the following inequalities between the corresponding factors inside the logarithms

X(n) = lg
(

n

6

n− 1

6

n− 2
6

n− 3

6

. . . 3

6

2

6

1

6

)
T(n) = lg

(
n

6

n
6

n− 2

6

n− 2

6

. . . 3

6

3

6

1

6

)
Y(n) = lg

(
n+ 1 n n− 1 n− 2 . . . 4 3 2

)
However, X(n) = Θ(n lgn) and Y(n) = Θ((n+ 1) lg (n+ 1)) = Θ(n lgn) by (1.42). Having
in mind that and (3.76), T(n) = Θ(n lgn) follows immediately.

Case II: n is even. Then c = 2 and (3.73) is:

2 lgn+ 2 lg (n− 2) + 2 lg (n− 4) + . . .+ 2 lg 4+ T(2) (3.77)

We approximate T(2) with 1 = lg 2, which does not alter the asymptotic growth rate of
(3.74), and thus (3.74) becomes:

lgn2 + lg (n− 2)2 + lg (n− 4)2 + . . .+ lg 42 + lg 2 =

lg
(
n2(n− 2)2(n− 4)2 . . . 42.2

)
=

lg
(
n.n(n− 2)(n− 2)(n− 4)(n− 4) . . . 6.6.4.4.2︸ ︷︷ ︸

n−1 factors

)
= T(n) (3.78)

Define

X(n) = lg
(
n(n− 1)(n− 2)(n− 3) . . . 4.3.2︸ ︷︷ ︸

n−1 factors

)
= lgn!

Y(n) = lg
(

(n+ 1)n(n− 1)(n− 2) . . . 5.4.3︸ ︷︷ ︸
n−1factors

)
= lg

(n+ 1)!

2
= lg (n+ 1)! − 1

61

and note that

X(n) ≤ T(n) ≤ Y(n) (3.79)

because of the following inequalities between the corresponding factors inside the logarithms

X(n) = lg
(

n

6

n− 1

6

n− 2

6

n− 3

6

. . . 4

6

3

6

2

6
)

T(n) = lg
(

n

6

n

6

n− 2

6

n− 2

6

. . . 4

6

4

6

2

6

)
Y(n) = lg

(
n+ 1 n n− 1 n− 2 . . . 5 4 3

)
However, X(n) = Θ(n lgn) and Y(n) = Θ((n+ 1) lg (n+ 1)) = Θ(n lgn) by (1.42). Having
in mind that and (3.76), T(n) = Θ(n lgn) follows immediately. �

Problem 55. Solve by induction

T(n) = T(n− 2) + 2 lgn (3.80)

Solution:
We use Problem 54 to guess the solution T(n) = Θ(n lgn).

Part I: Proof that T(n) = O(n lgn), that is, there exists a positive constant c such that
for all sufficiently large n,

T(n) ≤ cn lgn (3.81)

The following inequalities hold

T(n) ≤ c(n− 2) lg (n− 2) + 2 lgn from the induction hypothesis
≤ c(n− 2) lgn+ 2 lgn
= cn lgn− 2c lgn+ 2 lgn
≤ cn lgn provided that − 2c lgn+ 2 lgn ≤ 0 ⇔ c ≥ 1

Part II: Proof that T(n) = Ω(n lgn), that is, there exists a positive constant d such that
for all sufficiently large n,

T(n) ≥ dn lgn (3.82)

It is the case that

T(n) ≥ d(n− 2) lg (n− 2) + 2 lgn from the induction hypothesis
= (dn− 2d) lg (n− 2) + 2 lgn
= dn lg (n− 2) + 2(lgn− d lg (n− 2)) (3.83)

62

Having in mind (3.82) and (3.83), our goal is to show that

dn lg (n− 2) + 2(lgn− d lg (n− 2)) ≥ dn lgn ⇔
dn lg (n− 2) − dn lgn+ 2(lgn− d lg (n− 2)) ≥ 0 ⇔

d lg
(
n− 2

n

)n

︸ ︷︷ ︸
A

+ 2 lg
n

(n− 2)d︸ ︷︷ ︸
B

≥ 0 (3.84)

Let us first evaluate A when n grows infinitely:

lim
n→∞d lg

(
n− 2

n

)n

= d lim
n→∞ lg

(
1+

−2

n

)n

= d lg lim
n→∞

(
1+

−2

n

)n

= d lg e−2 = −2d lg e

Now consider B when n grows infinitely:

lim
n→∞ 2 lg

n

(n− 2)d
= 2 lg lim

n→∞ n

(n− 2)d
(3.85)

Note that for any d such that 0 < d < 1, (3.85) is +∞. For instance, for d = 1
2 , (3.85)

becomes

2 lg lim
n→∞

(
n

1
2

n
1
2

(n− 2)
1
2

)
=

2 lg lim
n→∞

(
n

1
2

(
n

n− 2

)1
2

)
=

2 lg


(

lim
n→∞n1

2

) lim
n→∞

(
1

1− 2
n

)1
2


︸ ︷︷ ︸

1

 = +∞

It follows inequality (3.84) is true for any choice of d such that 0 < d < 1, say, d = 1
2 ,

because A by absolute value is limited by a constant, and B grows infinitely. And that
concludes the proof of (3.81). �

The proof by induction in Part II of the solution to Problem 54 is tricky. Consider (3.83):❢❢ NB ❢❢

dn lg (n− 2) + 2(lgn− d lg (n− 2))

Typically, we deal with logarithms of additions or differences by approximating the additions
or differences with multiplications or fractions in such a way that the inequality holds in the
desired direction. But notice that if we approximate n− 2 inside the above logarithms with
any fraction n

α , for any positive constant α, it must be the case that α > 1, otherwise the
inequality would not be in the direction we want. Here is what happens when we substitute
n− 2 with n

α in the logarithm on the left:

dn lg
n

α
+ 2(lgn− d lg (n− 2)) = dn lgn− dn lgα+ 2(lgn− d lg (n− 2))

63

To accomplish the proof, we have to show the latter is greater than or equal to dn lgn; and
to show that, we have to show that the term −dn lgα+2(lgn−d lg (n− 2)) is positive. But
that is not true! d > 0 and α > 1, therefore −dn lgα < 0 for all n > 0. And the asymptotic
behaviour of −dn lgα + 2(lgn − d lg (n− 2)) is determined by −dn lgα because the linear
function dominates the logarithmic function for all sufficiently large n. Therefore, we need
a more sophisticated technique, based on analysis.

Problem 56. Solve by unfolding

T(n) = T(n− 1) + lgn

Solution:

T(n) = T(n− 1) + lgn
= T(n− 2) + lg (n− 1) + lgn
= T(n− 3) + lg (n− 2) + lg (n− 1) + lgn
. . .

= T(1)︸︷︷︸
Θ(1)

+ lg 2+ lg 3+ . . .+ lg (n− 2) + lg (n− 1) + lgn

= Θ(1) + lg (2.3 . . . (n− 2)(n− 1)n)

= Θ(1) + lgn!

= Θ(1) +Θ(n lgn) by (1.42)
= Θ(n lgn)

�

Problem 57. Solve by unfolding

T(n) = 3T
(⌊n
4

⌋)
+ n (3.86)

Solution:

T(n) = n+ 3T
(⌊n
4

⌋)
= n+ 3

(⌊n
4

⌋
+ 3T

(⌊⌊
n
4

⌋
4

⌋))

= n+ 3
(⌊n
4

⌋
+ 3T

(⌊ n
16

⌋))
because

⌊⌊
n
4

⌋
4

⌋
=
⌊ n
16

⌋
= n+ 3

⌊n
4

⌋
+ 9T

(⌊ n
16

⌋)
= n+ 3

⌊n
4

⌋
+ 9

⌊ n
16

⌋
+ 27T

(⌊ n
64

⌋)
. . .

= 30
⌊ n
40

⌋
+ 31

⌊ n
41

⌋
+ 32

⌊ n
42

⌋
+ . . .+ 3i−1

⌊ n

4i−1

⌋
︸ ︷︷ ︸

P(n)

+ 3iT
(⌊n
4i

⌋)
︸ ︷︷ ︸

remainder

(3.87)

64

The maximum value for i, let us call it imax, is achieved when
⌊

n
4i

⌋
becomes 1. It follows

imax = blog4 nc. Let us estimate the main part P(n) and the remainder of (3.87) for i = imax.

• To estimate P(n), define

X(n) = 30
(n
40

)
+ 31

(n
41

)
+ 32

(n
42

)
+ . . .+ 3imax−1

(n

4imax−1

)
Y(n) = 30

(n
40

− 1
)

+ 31
(n
41

− 1
)

+ 32
(n
42

− 1
)

+ . . .+ 3imax−1
(n

4imax−1
− 1
)

Clearly, X(n) ≥ P(n) ≥ Y(n). But

X(n) = n

imax−1∑
j=0

(
3

4

)j


≤ n
∞∑
j=0

(
3

4

)j

= n
1

1− 3
4

= Θ(n)

and

Y(n) = n

imax−1∑
j=0

(
3

4

)j
−

imax−1∑
j=0

3j

= nΘ(1) −Θ
(
3imax−1

)
by Corollary 1 on page 19

= Θ(n) −Θ
(
3log4 n

)
since imax = blog4 nc

= Θ(n) −Θ(nlog4 3) = Θ(n)

Then it has to be the case that P(n) = Θ(n).

• To estimate the remainder, consider the two factors in it:

3imax = 3blog4 nc = Θ(3log4 n) = Θ(nlog3 4)

T
(⌊ n

4imax

⌋)
= T(1) = Θ(1)

It follows the remainder is Θ(3log4 n) = o(n).

Therefore, T(n) = Θ(n) + o(n) = Θ(n). �

Problem 58. Solve

T(n) = 2T
(n
2

)
+ n2

by the method of the recursion tree.

65

n2

64
n2

64
n2

64
n2

64
n2

64
n2

64
n2

64
n2

64

level
n

2

level
n

4

level n

level
n

8

n2

16
n2

16
n2

16
n2

16

n2

4
n2

4

n2 n2

n2

2

n2

4

n2

8

Figure 3.6: The recursion tree of T(n) = 2T
(

n
2

)
+ n2.

Solution:
The recursion tree is shown on Figure 3.6. The solution is the sum

n2 +
n2

2
+
n2

4
+
n2

8
+ . . . ≤ n2

∞∑
i=0

1

2i
= 2n2

It follows T(n) = Θ(n2). �

Problem 59. Solve

T(n) = T
(n
3

)
+ T

(
2n

3

)
+ n

by the method of the recursion tree.

Solution:
The recursion tree is shown on Figure 3.7. This time the tree is not complete so we do not
write the levels on the left side in terms of n (as we did on Figure 3.6). Rather, the level of
each node is the distance between it and the root. Thus the equidistant with respect to the
root nodes are at the same level. Think of the tree as an ordered tree. That is, if a node
has any children we distinguish between the left and the right child. The value of the left
child is the value of the parent multiplied by 1

3 and the value of the right child is the value
of the parent multiplied by 2

3 . It is trivial to prove by induction that for each level such
that all the nodes at this level exist, the sum of the values at that level is n. However, we
cannot obtain the answer immediately through mulitplying n by the height because the tree
is not balanced. The maximum distance between the root and any leaf is achieved along

66

2n
27

2n
27

4n
27

2n
27

4n
27

4n
27

8
27

n
27

×1
3 ×2

3

×1
3 ×2

3 ×1
3 ×2

3

×2
3×2

3×2
3×2

3×1
3 ×1

3 ×1
3×1

3

n
9

2n
9

2n
9

4n
9

2n
3

n n

n

n

n
3

n

Figure 3.7: The recursion tree of T
(

n
3

)
+ T

(
2n
3

)
+ n.

the rightmost path (starting at the root, always take the right choice; see Figure 3.7) and
the minimum distance, by the leftmost path. The length of the leftmost path is determined
by the iterator

n→ n

3

which is executed Θ(log3 n) times before reaching any fixed in advance constant. The length
of the rightmost path is determined by the iterator

n→ 2n

3
=
n
3
2

which is executed Θ
(
log 3

2
n
)

times before reaching any fixed in advance constant.
Let T be the recursion tree. Construct two balanced trees T1 and T2 such that the

height of T1 is Θ(log3 n) and the height of T2 is Θ
(
log 3

2
n
)
. Suppose that each level in T1

and T2 is associated with some value n – it does not matter for what reason, just assume
each level “costs” n. Let Si(n) be the sum of those costs in Ti over all levels for i = 1, 2.
Clearly,

S1(n) = n×Θ(log3 n) = Θ(n log3 n) = Θ(n lgn)

S2(n) = n×Θ
(
log 3

2
n
)

= Θ
(
n log 3

2
n
)

= Θ(n lgn)

To conlude the solution, note that S1(n) ≤ T(n) ≤ S2(n) because T1 can be considered a
subtree of T and T can be considered a subtree of T2. Then T(n) = Θ(n lgn). �

67

Problem 60. Solve by unfolding

T(n) = T(n− a) + T(a) + n a = const, a ≥ 1

Solution:
We assume a is integer† and the initial conditions are

T(1) = Θ(1)

T(2) = Θ(1)

. . .

T(a) = Θ(1)

Let us unfold the recurrence.

T(n) = T(n− a) + T(a) + n

= (T(n− 2a) + T(a) + n− a) + T(a) + n

= T(n− 2a) + 2T(a) + 2n− a

= (T(n− 3a) + T(a) + n− 2a) + 2T(a) + 2n− a

= T(n− 3a) + 3T(a) + 3n− 3a

= (T(n− 4a) + T(a) + n− 4a) + 3T(a) + 3n− 3a

= T(n− 4a) + 4T(a) + 4n− 6a

= (T(n− 5a) + T(a) + n− 4a) + 4T(a) + 4n− 6a

= T(n− 5a) + 5T(a) + 5n− 10a

. . .

= T(n− ia) + iT(a) + in−
1

2
i(i− 1)a (3.88)

Let the maximum value i takes be imax. Consider the iterator

n→ n− a

It maps every n > a, n ∈ N, to a unique number from {1, 2, . . . , a}. Let that number be
called k. So imax is the number of times the iterator is executed until the variable becomes
k. If nmoda 6= 0 then k is nmoda, otherwise k is a‡. It follows that

imax =

{⌊
n
a

⌋
, if nmoda 6= 0

n
a − 1, else

That is equivalent to

imax =
⌈n
a

⌉
− 1

†It is not essential to postulate a is integer. The problems makes sense even if a is just a positive
real. If that is the case the initial conditions have to be changed to cover some interval with length a, e.g.
T(i) = const. if i ∈ (0, a].

‡Not n mod a, which is 0.

68

×α ×β

×α ×β ×α ×β

α3n α2βn

α2βn αβ2n

α2βn αβ2n

αβ2n β3n

×α ×α ×α×α ×β×β×β×β

α2n αβn αβn

n n

αn βn

β2n

(α+ β)n

(α + β)2n

(α + β)3n

Figure 3.8: The recursion tree of T(n) = T(αn) + T(βn) + n where 0 < α,β < 1
and α+ β = 1.

Subsituting i with
⌈

n
a

⌉
− 1 in (3.88), we get

T(k) +
(⌈n
a

⌉
− 1
)
T(a) +

(⌈n
a

⌉
− 1
)
n−

1

2

(⌈n
a

⌉
− 1
)(⌈n

a

⌉
− 1− 1

)
a (3.89)

The growth rate of (3.89) is determined by

n
⌈n
a

⌉
−
1

2

⌈n
a

⌉ ⌈n
a

⌉
= Θ(n2)

It follows T(n) = Θ(n2). �

Problem 61. Solve

T(n) = T(αn) + T((1− α)n) + n, α = const., 0 < α < 1 (3.90)

by the method of the recursion tree.

Solution:
Define that 1− α = β. Obviously, 0 < β < 1 and (3.90) becomes

T(n) = T(αn) + T(βn) + n (3.91)

The recursion tree of (3.91) is shown on Figure 3.8. The solution is completely analogous
to the solution of Problem 59. The level of each node is the distance between it and the

69

root. The sum of the costs at every level such that all nodes at that levels exist, is n. More
precisely, at level i the sum is (α + β)in = n. The tree is not complete. Assume without
loss of generality that α ≤ β and think of the tree as an ordered tree. The shortest path
from the root to any leaf is the leftmost one, i.e. “follow the alphas”, and the longest path
is the rightmost one. The length of the shortest path is log(1

α) n and of the longest path,
log(

1
β

) n. We prove that T(n) = Θ(n lgn) just as in Problem 59 by considering two other

trees, one that is a subgraph of the current one and one that isa supergraph of the current
one. Since the first of then has sum of the costs n × Θ

(
log(1

α) n
)

= Θ(n lgn) and the

second one, n×Θ
(

log(
1
β

) n
)

= Θ(n lgn), it follows T(n) = Θ(n lgn). �

Problem 62. Solve by unfolding

T(n) = T(n− 1) +
1

n
(3.92)

Solution:
Before we commence the unfolding check the definition of the harmonic series, the partial
sum Hn of the harmonic series, and its order of growth Θ(lgn) on page 98.

T(n) = T(n− 1) +
1

n

= T(n− 2) +
1

n− 1
+
1

n

= T(n− 3) +
1

n− 2
+

1

n− 1
+
1

n

. . .

= T(1) +
1

2
+
1

3
+ . . .+

1

n− 2
+

1

n− 1
+
1

n

= T(1) − 1+ 1+
1

2
+
1

3
+ . . .+

1

n− 2
+

1

n− 1
+
1

n︸ ︷︷ ︸
Hn

= O(1) +Hn

= O(1) +Θ(lgn)

= Θ(lgn)

�

Problem 63. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) + 1

Solution:

70

T(n) =
n

n+ 1
T(n− 1) + 1

=
n

n+ 1

(
n− 1

n
T(n− 2) + 1

)
+ 1

=
n− 1

n+ 1
T(n− 2) +

n

n+ 1
+ 1

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) + 1

)
+

n

n+ 1
+ 1

=
n− 2

n+ 1
T(n− 3) +

n− 1

n+ 1
+

n

n+ 1
+ 1

=
n− 2

n+ 1

(
n− 3

n− 2
T(n− 4) + 1

)
+
n− 1

n+ 1
+

n

n+ 1
+ 1

=
n− 3

n+ 1
T(n− 4) +

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+ 1 (3.93)

If we go on like that down to T(1), (3.93) unfolds into

T(n) =
2

n+ 1
T(1) +

3

n+ 1
+

4

n+ 1
+ . . .+

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+ 1

=
2

n+ 1
T(1) +

3

n+ 1
+

4

n+ 1
+ . . .+

n− 2

n+ 1
+
n− 1

n+ 1
+

n

n+ 1
+
n+ 1

n+ 1

=
2T(1)

n+ 1
+

1

n+ 1

n+1∑
i=3

i

=
2T(1)

n+ 1
+

1

n+ 1

((
n+1∑
i=1

i

)
− 3

)

=
2T(1)

n+ 1
+

1

n+ 1

(
(n+ 1)(n+ 2)

2
− 3

)
=

1

n+ 1

(
4T(1) + (n2 + 3n+ 2) − 6

)
=
n2 + 3n+ 4T(1) − 4

n+ 1

=
n2

n+ 1︸ ︷︷ ︸
Θ(n)

+
3n

n+ 1︸ ︷︷ ︸
Θ(1)

+
4T(1) − 4

n+ 1︸ ︷︷ ︸
O(1)

= Θ(n)

So, T(n) = Θ(n). �

Problem 64. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) + n2

Solution:

71

T(n) =
n

n+ 1
T(n− 1) + n2

=
n

n+ 1

(
n− 1

n
T(n− 2) + (n− 1)2

)
+ n2

=
n− 1

n+ 1
T(n− 2) +

n(n− 1)2

n+ 1
+ n2

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) + (n− 2)2

)
+
n(n− 1)2

n+ 1
+ n2

=
n− 2

n+ 1
T(n− 3) +

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

=
n− 2

n+ 1

(
n− 3

n− 2
T(n− 4) + (n− 3)2

)
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

=
n− 3

n+ 1
T(n− 4) +

(n− 2)(n− 3)2

n+ 1
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2 (3.94)

If we go on like that down to T(1), (3.94) unfolds into

T(n) =
2

n+ 1
T(1) +

3.22

n+ 1
+
4.32

n+ 1
+ . . .

+
(n− 2)(n− 3)2

n+ 1
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+ n2

=
2

n+ 1
T(1) +

3.22

n+ 1
+
4.32

n+ 1
+ . . .

+
(n− 2)(n− 3)2

n+ 1
+

(n− 1)(n− 2)2

n+ 1
+
n(n− 1)2

n+ 1
+

(n+ 1)n2

n+ 1

=
2T(1)

n+ 1
+

1

n+ 1

n+1∑
i=3

i(i− 1)2

=
2T(1)

n+ 1
+

1

n+ 1

((
n+1∑
i=1

i(i− 1)2

)
− 2

)

=
2T(1) − 2

n+ 1
+

1

n+ 1

n+1∑
i=1

i(i− 1)2

=
2T(1) − 2

n+ 1
+

1

n+ 1

n+1∑
i=1

(i3 − 2i2 + i)

=
2T(1) − 2

n+ 1
+

1

n+ 1

(
n+1∑
i=1

i3 − 2

n+1∑
i=1

i2 +

n+1∑
i=1

i

)
(3.95)

72

Having in mind (4.21), (4.22), and (4.23) on page 99, (3.95) becomes

2T(1) − 2

n+ 1
+

1

n+ 1

(
(n+ 1)2(n+ 2)2

4
− 2

(n+ 1)(n+ 2)(2n+ 3)

6
+

(n+ 1)(n+ 2)

2

)
=
2T(1) − 2

n+ 1︸ ︷︷ ︸
O(1)

+
(n+ 1)(n+ 2)2

4︸ ︷︷ ︸
Θ(n3)

−
(n+ 2)(2n+ 3)

3︸ ︷︷ ︸
Θ(n2)

+
n+ 2

2︸ ︷︷ ︸
Θ(n)

= Θ(n3)

So, T(n) = Θ(n3). �

Problem 65. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) +

√
n (3.96)

where
√
n stands for either b

√
nc or d

√
ne.

Solution:

T(n) =
n

n+ 1
T(n− 1) +

√
n

=
n

n+ 1

(
n− 1

n
T(n− 2) +

√
n− 1

)
+
√
n

=
n− 1

n+ 1
T(n− 2) +

n
√
n− 1

n+ 1
+
√
n

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) +

√
n− 2

)
+
n
√
n− 1

n+ 1
+
√
n

=
n− 2

n+ 1
T(n− 3) +

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
n− 2

n+ 1

(
n− 3

n− 2
T(n− 4) +

√
n− 3

)
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
n− 3

n+ 1
T(n− 4) +

(n− 2)
√
n− 3

n+ 1
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n (3.97)

73

If we go on like that down to T(1), (3.97) unfolds into

T(n) =
2

n+ 1
T(1) +

3
√
2

n+ 1
+
4
√
3

n+ 1
+ . . .

+
(n− 2)

√
n− 3

n+ 1
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+
√
n

=
2

n+ 1
T(1) +

3
√
2

n+ 1
+
4
√
3

n+ 1
+ . . .

+
(n− 2)

√
n− 3

n+ 1
+

(n− 1)
√
n− 2

n+ 1
+
n
√
n− 1

n+ 1
+

(n+ 1)
√
n

n+ 1

=
2T(1)

n+ 1
+

1

n+ 1

n∑
i=2

(i+ 1)
√
i

=
2T(1)

n+ 1
+

1

n+ 1

((
n∑

i=1

(i+ 1)
√
i

)
− 2

)

=
2T(1) − 2

n+ 1
+

1

n+ 1

n∑
i=1

(i+ 1)
√
i

=
2T(1) − 2

n+ 1
+

1

n+ 1

n∑
i=1

(i
√
i+

√
i)

=
2T(1) − 2

n+ 1
+

1

n+ 1

(
n∑

i=1

i
√
i+

n∑
i=1

√
i

)
(3.98)

But we know that
n∑

i=1

⌊√
i
⌋

= Θ
(
n

3
2

)
by (4.5) on page 90.

n∑
i=1

⌈√
i
⌉

= Θ
(
n

3
2

)
by (4.7) on page 92.

n∑
i=1

i
⌊√
i
⌋

= Θ
(
n

5
2

)
by (4.10) on page 94.

n∑
i=1

i
⌈√
i
⌉

= Θ
(
n

5
2

)
by (4.14) on page 97.

Therefore, regardless of whether “
√
n” in (3.96) stands for b

√
nc or d

√
ne,

T(n) =
2T(1) − 2

n+ 1
+

1

n+ 1

(
Θ
(
n

5
2

)
+Θ

(
n

5
2

))
by substituting into (3.98)

=
2T(1) − 2

n+ 1
+

1

n+ 1

(
Θ
(
n

5
2

))
= O(1) +Θ

(
n

3
2

)
So, T(n) = Θ

(
n

3
2

)
. �

74

Problem 66. Solve by unfolding

T(n) =
n

n+ 1
T(n− 1) + lgn (3.99)

Solution:

T(n) =
n

n+ 1
T(n− 1) + lgn

=
n

n+ 1

(
n− 1

n
T(n− 2) + lg (n− 1)

)
+ lgn

=
n− 1

n+ 1
T(n− 2) +

n

n+ 1
lg (n− 1) + lgn

=
n− 1

n+ 1

(
n− 2

n− 1
T(n− 3) + lg (n− 2)

)
+

n

n+ 1
lg (n− 1) + lgn

=
n− 2

n+ 1
T(n− 3) +

n− 1

n+ 1
lg (n− 2) +

n

n+ 1
lg (n− 1) + lgn

= . . .

=
2

n+ 1
T(1)︸ ︷︷ ︸

A

+
3

n+ 1
lg 2+

4

n+ 1
lg 3+ . . .+

n− 1

n+ 1
lg (n− 2) +

n

n+ 1
lg (n− 1) + lgn︸ ︷︷ ︸

B

Clearly, A = O(1). Consider B.

B =
3

n+ 1
lg 2+

4

n+ 1
lg 3+ . . .+

n− 1

n+ 1
lg (n− 2) +

n

n+ 1
lg (n− 1) +

n+ 1

n+ 1
lgn

=
1

n+ 1
(3 lg 2+ 4 lg 3+ . . .+ (n− 1) lg (n− 2) + n lg (n− 1) + (n+ 1) lgn)︸ ︷︷ ︸

C

Now consider C.

C = 3 lg 2+ 4 lg 3+ . . .+ (n− 1) lg (n− 2) + n lg (n− 1) + (n+ 1) lgn
= lg 2+ lg 3+ . . .+ lg (n− 1) + lgn︸ ︷︷ ︸

D

+ 2 lg 2+ 3 lg 3+ . . .+ (n− 1) lg (n− 1) + n lgn︸ ︷︷ ︸
E

But D = Θ(n lgn) (see Problem 79 on page 86) and E = Θ(n2 lgn) (see Problem 80 on
page 86). It follows that C = Θ(n2 lgn), and so B = Θ(n lgn). We conclude that

T(n) = Θ(n lgn) �

Problem 67. Solve

T(1) = Θ(1) (3.100)
T(2) = Θ(1) (3.101)
T(n) = T(n− 1).T(n− 2) (3.102)

75

Solution:
Unlike the problems we encountered so far, the aymptotic growth rate of T(n) in this
problem depends on the concrete values of the constants in (3.100) and (3.101). It is easy
to see that if T(1) = T(2) = 1 then T(n) = 1 for all positive n. So let us postulate that

T(1) = c (3.103)
T(2) = d (3.104)

where c and d are some positive constants. Then

T(3) = T(2).T(1) = cd

T(4) = T(3).T(2) = cd2

T(5) = T(4).T(3) = c2d3

T(6) = T(5).T(4) = c3d5

T(7) = T(6).T(5) = c5d8

. . .

The degrees that appear in this sequence look like the Fibonacci number (see the definition
on page 98). Indeed, it is trivial to prove by induction that

T(1) = c

T(n) = dFn−1cFn−2 , for all n > 1 (3.105)

Define

a = c
1√
5

b = d
1√
5

and derive

T(n) = Θ
(
bφn−1

)
Θ
(
aφn−2

)
applying (4.15) on page 98 on (3.105)

= Θ
(
bφn−1

aφn−2
)

= Θ
(
bφ.φn−2

aφn−2
)

= Θ
(
kφn−2

aφn−2
)

defining that bφ = k

= Θ
(
(ak)φn−2

)
(3.106)

Depending on how detalied analysis we need, we may stop right here. However, we can go
on a little further because depending on what a and k are, (3.105) can have dramatically
different asymptotic growth.

• If ak > 1, T(n) −−−−−→
n → +∞ ∞.

• If ak = 1, T(n) = 1 for all positive n, thus T(n) = Θ(1).

• If ak < 1, T(n) −−−−−→
n → +∞ 0, thus T(n) = O(1). �

76

Problem 68. Solve

T(1) = Θ(1)

T(n) =

n−1∑
i=1

T(i) + 1

Solution:
By definition,

T(n) = T(n− 1)+ T(n− 2) + . . .+ T(2) + T(1) + 1 (3.107)
T(n− 1) = T(n− 2) + . . .+ T(2) + T(1) + 1 (3.108)

Subtract 3.108 from 3.107 to obtain

T(n) − T(n− 1) = T(n− 1)

So, the original recurrence is equivalent to the following one:

T(1) = Θ(1)

T(n) = 2T(n− 1)

It is trivial to show that T(n) = Θ(2n), either by induction or by the method with the
characteristic equation. �

Problem 69. Solve

T(1) = Θ(1)

T(n) =

n−1∑
i=1

(T(i) + T(n− i)) + 1

Solution:

T(n) =

n−1∑
i=1

(T(i) + T(n− i)) + 1

=

n−1∑
i=1

T(i)︸ ︷︷ ︸
T(1)+T(2)+...+T(n−1)

+

n−1∑
i=1

T(n− i)︸ ︷︷ ︸
T(n−1)+T(n−2)+...+T(1)

+ 1

= 2

n−1∑
i=1

T(i) + 1

Having in mind the latter result, we proceed as in the previous problem.

T(n) = 2T(n− 1)+ 2T(n− 2) + . . .+ 2T(2) + 2T(1) + 1 (3.109)
T(n− 1) = 2T(n− 2) + . . .+ 2T(2) + 2T(1) + 1 (3.110)

77

Subtract 3.110 from 3.109 to obtain

T(n) − T(n− 1) = 2T(n− 1)

So, the original recurrence is equivalent to the following one:

T(1) = Θ(1)

T(n) = 3T(n− 1)

It is trivial to show that T(n) = Θ(3n), either by induction or by the method with the
characteristic equation. �

Problem 70. Solve

T(1) = Θ(1)

T(n) = nT(n− 1) + 1

Solution:

T(n) = nT(n− 1) + 1

= n((n− 1)T(n− 2) + 1) + 1

= n(n− 1)T(n− 2) + n+ 1

= n(n− 1)((n− 2)T(n− 3) + 1) + n+ 1

= n(n− 1)(n− 2)T(n− 3) + n(n− 1) + n+ 1

= n(n− 1)(n− 2)((n− 4)T(n− 3) + 1) + n(n− 1) + n+ 1

= n(n− 1)(n− 2)(n− 4)T(n− 3) + n(n− 1)(n− 2) + n(n− 1) + n+ 1

= . . .

=
n!

(n− i)!
T(n− i) +

n!

(n− i+ 1)!
+

n!

(n− i+ 2)!
+ . . .+

n!

(n− 1)!
+
n!

n!
(3.111)

Clearly, the maximum value i achieves is imax = n− 1. For i = imax, (3.111) becomes:

T(n) =
n!

1!
T(1) +

n!

2!
+
n!

3!
+ . . .+

n!

(n− 1)!
+
n!

n!

= n!×
(
T(1)

1!
+
1

2!
+
1

3!
+ . . .+

1

(n− 1)!
+
1

n!

)
︸ ︷︷ ︸

A

We claim A is bounded by a constant. To see why, note that the series
∑∞

i=1
1
i! is convergent

because the geometric series
∑∞

i=1
1
2i is convergent and i! > 2i for all i > 3. Therefore,

T(n) = Θ(n!)

�

78

3.2.2 The Master Theorem

There are several theoretical results solving a broad range of recurrences corresponding to
divide-and-conquer algorithms that are called master theorems. The one stated below is
due to [CLR00]. There is a considerately more powerful master theorem due to Akra and
Bazzi [AB98]. See [Lei96] for a detailed explanation.

Theorem 1 (Master Theorem, [CLR00], pp. 62). Let a ≥ 1 and b > 1 be constants,
let k = lgb a, and let f(n) be a positive function. Let

T(n) = aT
(n
b

)
+ f(n)

T(1) = Θ(1)

where
n

b
is interpreted either as

⌊n
b

⌋
or
⌈n
b

⌉
. Then T(n) can be bounded asymptotically as

follows.

Case 1 If f(n) = O
(
nk−ε

)
for some positive constant ε then T(n) = Θ(nk).

Case 2 If f(n) = Θ(nk) then T(n) = Θ
(
nk. lgn

)
.

Case 3 If both

1. f(n) = Ω
(
nk+ε

)
for some positive constant ε, and

2. for some positive constant c and for all sufficiently large n, a.f
(

n
b

)
≤ c.f(n),

then T(n) = Θ(f(n)). �

Case 3-2 is known as the regularity condition.

Note that the condition f(n) = O
(
nk−ε

)
is stronger than f(n) = o(nk) and f(n) =

Ω
(
nk+ε

)
is stronger than f(n) = ω

(
nk
)
:

f(n) = O(nk−ε) ⇒ f(n) = o(nk)

f(n) = o(nk) 6⇒ f(n) = O(nk−ε)

f(n) = Ω(nk+ε) ⇒ f(n) = ω(nk)

f(n) = ω(nk) 6⇒ f(n) = Ω(nk+ε)

For example, consider that

n lgn = ω(n) (3.112)

n lgn 6= Ω(n1+ε) for any ε > 0 because lgn 6= Ω(nε) by (1.44) (3.113)
n

lgn
= o(n) (3.114)

n

lgn
6= O(n1−ε) for any ε > 0 because

1

lgn
6= O(n−ε) (3.115)

79

To see why 1
lg n 6= O(n−ε) in (3.115) consider that

lim
n→∞ lgn

nε
= 0 ⇒ lim

n→∞
(

1
nε

1
lg n

)
= 0 ⇒ 1

nε
= o

(
1

lgn

)
by (1.6) ⇒

1

lgn
= ω

(
1

nε

)
by the transpose symmetry

Problem 71. Solve by the Master Theorem

T(n) = 4T
(n
2

)
+ n

Solution:
Using the terminology of the Master Theorem, a is 4, b is 2, thus logb a is log2 4 = 2 and
nlogb a is n2. The function f(n) is n. The theorem asks us to compare f(n) and nlogb a,
which, in the current case, is to compare n with n2. Clearly, n = O(n2−ε) for some ε > 0,
so Case 1 of the Master Theorem is applicable and T(n) = n2. �

Problem 72. Solve by the Master Theorem

T(n) = T

(
2n

3

)
+ 1

Solution:
Rewrite the recurrence as

T(n) = 1.T

(
n
3
2

)
+ 1

Using the terminology of the Master Theorem, a is 1, b is 3
2 , thus logb a is log 3

2
1 = 0 and

nlogb a is n0 = 1. The function f(n) is n. Clearly, 1 = Θ(n0), so Case 2 of the Master
Theorem is applicable. Assording to it, T(n) = Θ(1. lgn) = Θ(lgn). �

Problem 73. Solve

T(n) = 3T
(n
4

)
+ n lgn

Solution:
Using the terminology of the Master Theorem, a is 3, b is 4, thus logb a is log4 3, which
is approximately 0.79, and the function f(n) is n lgn. It certainly is true that n lgn =

Ω(nlog4 3+ε) for some ε > 0, for instance ε = 0.1. However, we have to check the regularity
condition to see if Case 3 of the Master Theorem is aplicable. The regularity condition in
this case is:

∃c such that 0 < c < 1 and 3
n

4
lg
n

4
≤ cn lgn for all sufficiently large n

The latter clearly holds for, say, c = 3
4 , therefore Case 3 is applicable and according to it,

T(n) = Θ(n lgn). �

80

Problem 74. Solve

T(n) = 2T
(n
2

)
+ n lgn

Solution:
Let us the try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 2 and b is 2, thus logb a is log2 2 = 1, therefore nlogb a is n1 = n. The
function f(n) is n lgn. Let us see if we can classify that problem in one of the three cases
of the Master Theorem.

try Case 1 Is it true that n lgn = O(n1−ε) for some ε > 0? No, because n lgn = ω(n1).

try Case 2 Is it true that n lgn = Θ(n1)? No, because n lgn = ω(n1).

try Case 3 Is it true that n lgn = Ω(n1+ε) for some ε > 0? No, see (3.113).

Therefore this problem cannot be solved using the Master Theorem as stated above. We
solve it by Theorem 2 on page 84 and the answer is T(n) = Θ(n lg2 n). �

Problem 75. Solve

T(n) = 4T
(n
2

)
+ n (3.116)

T(n) = 4T
(n
2

)
+ n2 (3.117)

T(n) = 4T
(n
2

)
+ n3 (3.118)

(3.119)

Solution:
Using the terminology of the Master Theorem, a is 4 and b is 2, thus logb a is log4 2 = 2,
therefore nlogb a is n2. With respect to (3.116), it is the case that n = O(n2−ε) for some
ε > 0, therefore the solution of (3.116) is T(n) = Θ(n2) by Case 1 of the Master Theorem.
With respect to (3.117), it is the case that n2 = Θ(n2), therefore the solution of (3.117)
is T(n) = Θ(n2 lgn) by Case 2 of the Master Theorem. With respect to (3.118), it is the
case that n3 = Ω(n2+ε) for some ε > 0, therefore the solution of (3.118) is T(n) = Θ(n3)

by Case 3 of the Master Theorem, provided the regularity condition holds. The regularity
condition here is

∃c such that 0 < c < 1 and 4
(n
2

)3
≤ cn3 for all sufficiently large n

Clearly that holds for any c such that 1
2 ≤ c < 1. Therefore, by Case 3 of the Master

Theorem, the solution of (3.118) is T(n) = Θ(n3). �

Problem 76. Solve

T(n) = T
(n
2

)
+ lgn (3.120)

81

Solution:
Let us try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 1 and b is 2, thus logb a is log2 1 = 0, therefore nlogb a is n0 = 1. The
function f(n) is lgn. Let us see if we can classify that problem in one of the three cases of
the Master Theorem.

try Case 1 Is it true that lgn = O(n0−ε) for some ε > 0? No, because lgn is an increasing
function and n−ε = 1

nε is a decreasing one.

try Case 2 Is it true that lgn = Θ(n0)? No, because lgn = ω(n0).

try Case 3 Is it true that lgn = Ω(n0+ε) for some ε > 0? No, see (1.44) on page 11.

So the Master Theorem is not applicable and we seek other methods for solving. Substitute
n by 2m, i.e. m = lgn and m = lgn. Then (3.120) becomes

T (2m) = T
(
2m−1

)
+m (3.121)

Further substitute T (2m) by S(m) and (3.121) becomes

S(m) = S(m− 1) +m (3.122)

But that recurrence is the same as (3.18), therefore its solution is S(m) = Θ(m2). Let us
go back now to the original n and T(n).

S(m) = Θ(m2) ⇔ T(2m) = Θ(lg2 n) ⇔ T(n) = Θ(lg2 n)

�

Problem 77. Solve by the Master Theorem

T(n) = 2T
(n
2

)
+ n3 (3.123)

T(n) = T

(
9n

10

)
+ n (3.124)

T(n) = 16T
(n
4

)
+ n2 (3.125)

T(n) = 7T
(n
3

)
+ n2 (3.126)

T(n) = 7T
(n
2

)
+ n2 (3.127)

T(n) = 2T
(n
4

)
+
√
n (3.128)

T(n) = 4T
(n
2

)
+ n2

√
n (3.129)

T(n) = 8T
(n
2

)
+ n3 (3.130)

T(n) = 3T
(n
2

)
+ 2n2 (3.131)

T(n) = 3T
(n
2

)
+ n lgn (3.132)

82

Solution:
(3.123): as n3 = Ω

(
nlog2 2+ε

)
for some ε > 0, we classify the problem into Case 3 of the

Master Theorem. To apply Case 3, we have to check the regularity condition holds. Namely,
there is a constant c such that 0 < c < 1 and 2

(
n
2

)3 ≤ cn3 ⇔ 1
4 ≤ c. So, any c such that

1
4 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is applicable,
therefore T(n) = Θ(n3).

(3.124): rewrite the recurrence as T(n) = 1.T

(
n
10
9

)
+ n. As n = Ω

(
n

(
log 10

9
1

)
+ε
)

for

some ε > 0, we classify the problem into Case 3 of the Master Theorem. To apply Case 3,
we have to check the regularity condition holds. Namely, there is a constant c such that

0 < c < 1 and 1
(

n
10
9

)
≤ cn ⇔ 9

10 ≤ c. So, any c such that 9
10 ≤ c < 1 will do, therefore

the regularity condition holds, therefore Case 3 is applicable, therefore T(n) = Θ(n).

(3.125): As n2 = Θ
(
nlog4 16

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = n2 lgn.

(3.126): as n2 = Ω
(
nlog3 7+ε

)
for some ε > 0, we classify the problem into Case 3 of the

Master Theorem. To apply Case 3, we have to check the regularity condition holds. Namely,
there is a constant c such that 0 < c < 1 and 7

(
n
3

)2 ≤ cn2 ⇔ 7
9 ≤ c. So, any c such that

7
9 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is applicable,
therefore T(n) = Θ(n2).

(3.127): as n2 = O
(
nlog2 7−ε

)
for some ε > 0, we classify the problem into Case 1 of the

Master Theorem and so T(n) = Θ
(
nlog2 7

)
.

(3.128): as
√
n = Θ

(
nlog4 2

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = Θ(
√
n lgn).

(3.129): as n
5
2 = Ω

(
nlog2 4+ε

)
for some ε > 0, we classify the problem into Case 3 of

the Master Theorem. To apply Case 3, we have to check the regularity condition holds.
Namely, there is a constant c such that 0 < c < 1 and 4

(
n
2

)5
2 ≤ cn

5
2 ⇔ 1√

2
≤ c. So, any c

such that 1√
2
≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3 is

applicable, therefore T(n) = Θ(n2
√
n).

(3.130): As n3 = Θ
(
nlog8 2

)
, we classify the problem into Case 2 of the Master Theorem

and so T(n) = n3 lgn.

(3.131): as 2n2 = Ω
(
nlog2 3+ε

)
for some ε > 0, we classify the problem into Case 3 of

the Master Theorem. To apply Case 3, we have to check the regularity condition holds.
Namely, there is a constant c such that 0 < c < 1 and 3

(
2
(

n
2

)2) ≤ c2n2 ⇔ 3 ≤ 4c. So,

any c such that 3
4 ≤ c < 1 will do, therefore the regularity condition holds, therefore Case 3

is applicable, therefore T(n) = Θ(2n2) = Θ(n2).

(3.132): as n lgn = O
(
nlog2 3−ε

)
for some ε > 0, we classify the problem into Case 1 of the

Master Theorem and so T(n) = Θ
(
nlog2 3

)
. �

83

The following result extends Case 2 of the Master Theorem.

Theorem 2. Under the premises of Theorem 1, assume

f(n) = Θ(nk lgt n) (3.133)

for some constant t ≥ 0. Then

T(n) = Θ(nk lgt+1 n)

Proof:
Theorem 1 itself is not applicable because the recurrence for the said f(n) cannot be classified
into any of the three cases there. To solve the problem we use unfolding. For simplicity
we assume that n is an exact power of b, i.e. n = bm for some integer m > 0. The same
technique is used in [CLR00] for proving the Master Theorem: first prove it for exact powers
of b and then prove the result holds for any positive n. Here we limit our proof to the case
that n is an exact power of b and leave it to the reader to generalise for any positive n.

Assume that the logarithm in (3.133) is base-b and note we can rewrite what is inside
the Θ-notation on the right-hand side of (3.133) in the following way:

nk logt
b n = nlogb a (logb b

m)t = b(m logb a)mt = b(logb am)mt = ammt (3.134)

Then (3.133) is equivalent to saying that

c1a
mmt ≤ f(bm) ≤ c2ammt

for some positive constants c1 and c2 and all sufficiently large values of m. However, for
the sake of simplicity, we will assume in the remainder of the proof that

f(bm) = ammt (3.135)

The reader is invited to construct a proof for the general case.

By the definition of the Master Theorem, T(n) = aT
(

n
b

)
+ f(n). Using (3.135) we rewrite

that as follows.

T(bm) = aT

(
bm

b

)
+ ammt

= aT(bm−1) + ammt ⇔
S(m) = aS(m− 1) + ammt substituting T(bm) with S(m)

= a
(
aS(m− 2) + am−1(m− 1)t) + ammt

= a2S(m− 2) + am(m− 1)t + ammt

= a2
(
aS(m− 3) + am−2(m− 2)t

)
+ am(m− 1)t + ammt

= a3S(m− 3) + am(m− 2)t + am(m− 1)t + ammt

. . .

= am−1S(1) + am2t + am3t + . . .+ am(m− 2)t + am(m− 1)t + ammt

= am−1S(1) − am + am (1t + 2t + 3t + . . .+ (m− 2)t + (m− 1)t +mt)︸ ︷︷ ︸
Θ(mt+1) by (4.20) on page 99

= am−1S(1) − am + amΘ(mt+1)

= am−1S(1) − am +Θ(ammt+1) (3.136)

84

But (3.136) is Θ(ammt+1) because ammt+1 = ω(|am−1S(1) − am|). So,

S(m) = Θ(ammt+1) ⇔ T(n) = Θ
(
alogb n(logb n)t+1

)
Having in mind that alogb n = nlogb a and logb n = Θ(lgn), we conclude that

T(n) = Θ
(
nlogb a lgt+1 n

)
�

Problem 78. Solve

T(n) = 2T
(n
2

)
+

n

lgn

Solution:
Let us the try to solve it using the Master Theorem. Using the terminology of the Master
Theorem, a is 2 and b is 2, thus logb a is log2 2 = 1, therefore nlogb a is n1 = n. The
function f(n) is n

lg n . Let us see if we can classify that problem in one of the three cases of
the Master Theorem.

try Case 1 Is it true that n
lg n = O(n1−ε) for some ε > 0? No, see (3.115) on page 79.

try Case 2 Is it true that n
lg n = Θ(n1)? No, because n lgn = o(n1).

try Case 3 Is it true that n
lg n = Ω(n1+ε) for some ε > 0? No, because n lgn = o(n1).

Therefore this problem cannot be solved using the Master Theorem as stated above. Fur-
thermore, Theorem 2 on the preceding page cannot be applied either because it is not true
that n

lg n = Θ(nlog2 2 lgt(n)) for any t ≥ 0.
We solve the problem by unfolding.

T(n) = 2T
(n
2

)
+

n

lgn

= 2

(
2T
(n
4

)
+

n
2

lg n
2

)
+

n

lgn

= 4T
(n
4

)
+

n

(lgn) − 1
+

n

lgn

= 4

(
2T
(n
8

)
+

n
4

lg n
4

)
+

n

(lgn) − 1
+

n

lgn

= 8T
(n
8

)
+

n

(lgn) − 2
+

n

(lgn) − 1
+

n

lgn
. . .

= nT(1) +
n

2
+
n

3
+ . . .+

n

(lgn) − 2
+

n

(lgn) − 1
+

n

lgn

= nT(1) − n︸ ︷︷ ︸
A

+n

(
1

1
+
1

2
+
1

3
+ . . .+

1

(lgn) − 2
+

1

(lgn) − 1
+

1

lgn

)
︸ ︷︷ ︸

B

Clearly, |A| = O(n). Now observe that B = n.Hlg n because inside the parentheses is
the (lgn)th partial sum of the harmonic series (see 4.16 on page 98). By (4.17), Hlg n =

Θ(lg lgn), therefore B = Θ(n lg lgn), therefore T(n) = Θ(n lg lgn). �

85

Chapter 4

Appendix

Problem 79.

n∑
k=1

lg k ≈ n lgn

Solution:
One way to solve it is to see that the sum is

∑n
k=1 lg k = lg (n!) and then use Problem 1.42

on page 10. There is another way. Let m = bn
2 c, A =

∑m−1
k=1 lg k, and B =

∑n
k=m lg k. First

we prove that B ≈ n lgn.

n∑
k=m

lgm ≤
n∑

k=m

lg k ≤
n∑

k=m

lgn ⇔
(lgm)

n∑
k=m

1 ≤ B ≤ (lgn)

n∑
k=m

1 ⇔(
lg
⌊n
2

⌋)(
n−

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
C

≤ B ≤ (lgn)
(
n−

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
D

Clearly, C ≈ n lgn and D ≈ n lgn. It must be the case that B ≈ n lgn. Now we prove
that A � B. A has n−2

2 terms, in case n is even, and n−3
2 terms, in case n is odd. In any

event, A has less terms than B. Furthermore, every term of A is smaller than any term of
B. It follows A � B. Since

∑n
k=1 lg k = A+ B, it must be the case that

∑n
k=1 lg k ≈ n lgn.

�

Problem 80.

n∑
k=1

k lg k ≈ n2 lgn

Solution:

86

Let m = bn
2 c, A =

∑m−1
k=1 k lg k, and B =

∑n
k=m k lg k. First we prove that B ≈ n2 lgn.

n∑
k=m

m lgm ≤
n∑

k=m

k lg k ≤
n∑

k=m

n lgn ⇔
(m lgm)

n∑
k=m

1 ≤ B ≤ (n lgn)

n∑
k=m

1 ⇔(⌊n
2

⌋
lg
⌊n
2

⌋)(
n−

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
C

≤ B ≤ (n lgn)
(
n−

⌊n
2

⌋
+ 1
)

︸ ︷︷ ︸
D

Clearly, C ≈ n2 lgn and D ≈ n2 lgn. It must be the case that B ≈ n2 lgn. Now we prove
that A � B. A has n−2

2 terms, in case n is even, and n−3
2 terms, in case n is odd. In any

event, A has less terms than B. Furthermore, every term of A is smaller than any term of B.
It follows A � B. Since

∑n
k=1 k lg k = A+ B, it must be the case that

∑n
k=1 k lg k ≈ n lgn.

�

Problem 81. Find a closed formula for

n∑
k=0

2kk

Solution:
Let

Sn =

n∑
k=0

2kk

Then

Sn + (n+ 1)2n+1 =

n∑
k=0

2kk+ (n+ 1)2n+1 =

n∑
k=0

2k+1(k+ 1) = 2

n∑
k=0

2kk+ 2

n∑
k=0

2k

Since
∑n

k=0 2
k = 2n+1 − 1,

Sn + (n+ 1)2n+1 = 2

n∑
k=0

2kk︸ ︷︷ ︸
2Sn

+ 2(2n+1 − 1) = 2Sn + 2.2n+1 − 2

Then

Sn = n2n+1 + 2n+1 − 2.2n+1 + 2 = n2n+1 − 2n+1 + 2

So,

Sn = (n− 1)2n+1 + 2 (4.1)

�

87

Problem 82. Find a closed formula for
n∑

k=0

2kk2

Solution:
Let

Sn =

n∑
k=0

2kk2

Then

Sn + 2n+1(n+ 1)2 =

n∑
k=0

2kk2 + 2n+1(n+ 1)2 =

n∑
k=0

2k+1(k+ 1)2

= 2

n∑
k=0

2k(k2 + 2k+ 1)

= 2

n∑
k=0

2kk2

︸ ︷︷ ︸
2Sn

+ 4

n∑
k=0

2kk︸ ︷︷ ︸
4(n−1)2n+1+8

+ 2

n∑
k=0

2k

︸ ︷︷ ︸
2.2n+1−2

Then

Sn + n22n+1 + 2n2n+1 + 2.2n+1 = 2Sn + 4n2n+1 − 4.2n+1 + 8+ 2.2n+1 − 2

So,

Sn = n22n+1 − 2n2n+1 + 4.2n+1 − 6 (4.2)

�

Problem 83. Find a closed formula for the sum of the first n odd numbers

Sn = 1+ 3+ 5+ . . .+ 2n− 1

Solution:
It is trivial to prove by induction on n that Sn = n2.
Basis: S1 = 12.
Induction hypothesis: assume Sn = n2.
Induction step:

Sn+1 = 1+ 3+ 5+ . . .+ 2n− 1+ 2n+ 1

= Sn + 2n+ 1 by definition

= n2 + 2n+ 1 by the induction hypothesis

= (n+ 1)2

Indeed,

Sn = n2 (4.3)

There is a geometric proof of the same fact, illustrated on Figure 4.1. �

88

1+ 3 = 22

1+ 3+ 5+ 7 = 42

1+ 3+ 5 = 32

1 = 12

Figure 4.1: A geometric proof that the sum of the first n odd numbers is the nth

square n2.

Problem 84. Find a closed formula for

n∑
i=1

⌊√
i
⌋

Solution:
To gain some intuition, let us write down the sum explicitly, i.e. all the terms, for some
small n, say n = 17. For clarity put boxes around the terms whose positions are perfect
squares, i.e. around the first, fourth, ninth, and sixtienth term.

17∑
i=1

⌊√
i
⌋

= 1 + 1+ 1︸ ︷︷ ︸
run 1

+ 2 + 2+ 2+ 2+ 2︸ ︷︷ ︸
run 2

+ 3 + 3+ 3+ 3+ 3+ 3+ 3︸ ︷︷ ︸
run 3

+ 4 + 4︸ ︷︷ ︸
run 4

The pattern is clear: the sum is the first n, in this case n = 17, terms of a series whose
terms are the consecutive positive integers grouped in runs, run j being the sum of 2j + 1
in number j’s. Naturally, each run starts at a term whose position in the series is a perfect
square: run 1 starts at position 1, run 2 starts at position 4, run 3 starts at position 9, etc.
Problem 83 explains why the runs, except possibly for the last run, have lengths that are the
consecutive odd numbers—since the first j odd numbers sum precisely to a perfect square,
viz. j2, it follows the difference between the two consecutive perfect squares (j+ 1)2 − j2 is
an odd number, viz. 2j+ 1.

The run with the largest number can be incomplete, as is the case when n = 17—run
number 4 has only two terms. Let us call the number of complete runs, i.e. the ones that
have all the terms, kn. For instance, k17 = 3. We claim that

kn = b
√
n+ 1c− 1

To see why, imagine that n decreases one by one and think of the moment when kn decreases.
That is not when n becomes a perfect square minus one but when n becomes a perfect square
minus two. For instance, k15 = 3 but k14 = 2. Hence we have

√
n+ 1, not

√
n.

Having all that in mind we break the desired sum down into two sums:

n∑
i=1

⌊√
i
⌋

= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run. S2 = 0

if and only if n is a perfect square minus one. More precisely, if we denote the number of

89

terms in S2 by ln,

ln = n− b
√
n+ 1c2 + 1

For instance, l17 = 2 as seen above and indeed 17 − b
√
17+ 1c2 + 1 = 17 − 42 + 1 = 2;

l15 = 0 as seen above and indeed 15− b
√
15+ 1c2 + 1 = 15− 42 + 1 = 0.

Let us first compute S1.

S1 = 1.3+ 2.5+ 3.7+ 4.9+ 5.11+ . . .+ k(n)(2k(n) + 1)

=

k(n)∑
i=1

i(2i+ 1)

= 2

k(n)∑
i=1

i2 +

k(n)∑
i=1

i

= 2
k(n).(k(n) + 1).(2k(n) + 1)

6
+
k(n).(k(n) + 1)

2
by (4.21) and (4.22)

= k(n).(k(n) + 1)

(
4k(n) + 2

6
+
3

6

)
=
1

6
k(n).(k(n) + 1).(4k(n) + 5)

=
1

6
(b
√
n+ 1c− 1)(b

√
n+ 1c− 1+ 1)(4b

√
n+ 1c− 4+ 5)

=
1

6
(b
√
n+ 1c− 1)b

√
n+ 1c(4b

√
n+ 1c+ 1)

Clearly, S1 = Θ
(
n

3
2

)
. S2 is easier to compute, it has l(n) terms, each term being k(n)+ 1.

S2 = ln(kn + 1)

= (n− b
√
n+ 1c2 + 1)(b

√
n+ 1c− 1+ 1)

= (n− b
√
n+ 1c2 + 1)b

√
n+ 1c

Clearly, S2 = O
(
n

3
2

)
, therefore S1 + S2 = Θ

(
n

3
2

)
+O

(
n

3
2

)
= Θ

(
n

3
2

)
.

Let us denote b
√
n+ 1c by ñ. It follows that

S1 =
ñ(ñ− 1)(4ñ+ 1)

6

S2 = (n− ñ2 + 1)ñ
n∑

i=1

⌊√
i
⌋

= ñ

(
(ñ− 1)(4ñ+ 1)

6
+ (n− ñ2 + 1)

)
(4.4)

and
n∑

i=1

⌊√
i
⌋

= Θ
(
n

3
2

)
(4.5)

�

90

Problem 85. Find a closed formula for
n∑

i=1

⌈√
i
⌉

Solution:
Let us start with a small example as in Problem 84, say for n = 17. For clarity put boxes
around the terms whose positions are perfect squares, i.e. around the first, fourth, ninth,
and sixtienth term.

17∑
i=1

⌈√
i
⌉

= 1︸︷︷︸
run 1

+ 2+ 2+ 2︸ ︷︷ ︸
run 2

+ 3+ 3+ 3+ 3+ 3︸ ︷︷ ︸
run 3

+ 4+ 4+ 4+ 4+ 4+ 4+ 4︸ ︷︷ ︸
run 4

+ 5︸︷︷︸
run5

The pattern is quite similar to the one in Problem 84. We sum the first n terms of a series
whose terms are the consecutive positive integers grouped in runs, run j being the sum of
2j− 1 in number j’s.

The run with the largest number can be incomplete. For instance, if n = 17 then run
number 5 has only one term. Let us call the number of complete runs, i.e. the ones that
have all the terms, sn. For instance, s17 = 4. It is obvious that

sn = b
√
nc

We break the desired sum down into two sums:
n∑

i=1

⌊√
i
⌋

= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run. S2 = 0

if and only if n is a perfect square. We denote the number of terms in S2 by tn.

tn = n− b
√
nc2

For instance, t17 = 1 as seen above and indeed 17− b
√
17c2 = 17− 42 = 1; t16 = 0 as seen

above and indeed 16− b
√
16c2 = 16− 42 = 0.

Let us compute S1.

S1 = 1.1+ 2.3+ 3.5+ 4.7+ 5.9+ . . .+ sn(2sn − 1)

=

sn∑
i=1

i(2i− 1)

= 2

sn∑
i=1

i2 −

sn∑
i=1

i

= 2
sn.(sn + 1).(2sn + 1)

6
−
sn.(sn + 1)

2
by (4.21) and (4.22)

= sn.(sn + 1)

(
4sn + 2

6
−
3

6

)
=
1

6
sn.(sn + 1).(4sn − 1)

=
1

6
(b
√
nc)(b

√
nc+ 1)(4b

√
nc− 1)

91

Clearly, S1 = Θ
(
n

3
2

)
. Now we compute S2. It has tn terms, each term being sn + 1.

S2 = tn.(sn + 1)

= (n− b
√
nc2)(b

√
nc+ 1)

Clearly, S2 = O
(
n

3
2

)
, therefore S1 + S2 = Θ

(
n

3
2

)
+O

(
n

3
2

)
= Θ

(
n

3
2

)
.

It follows that
n∑

i=1

⌈√
i
⌉

= (b
√
nc+ 1)

(
b
√
nc(4b

√
nc− 1)

6
+ n− b

√
nc2
)

(4.6)

and
n∑

i=1

⌈√
i
⌉

= Θ
(
n

3
2

)
(4.7)

�

Problem 86. Find a closed formula for

n∑
i=1

i
⌊√
i
⌋

Solution:
The line of reasoning is very similar to the one in Problem 84. We sum the first n terms of
a series, the series being the one mentioned in the solution of Problem 84 with each term
multiplied by its position. Consider for example n = 17. The terms whose positions are
perfect squares are boxed.

17∑
i=1

i
⌊√
i
⌋

= 1 + 2+ 3︸ ︷︷ ︸
run 1

+ 8 + 10+ 12+ 14+ 16︸ ︷︷ ︸
run 2

+ 27 + 30+ 33+ 36+ 39+ 42+ 45︸ ︷︷ ︸
run 3

+ 64 + 68︸ ︷︷ ︸
run 4

Unlike Problem 84, now the runs consist of those consecutive terms whose differences are
equal (and equal to the number of the run). Just as in Problem 84, all the runs but the last
one are complete, the last run being either complete or incomplete. We denote the number
of the complete runs with kn and the number of terms in the incomplete run by ln. It is
the case that

kn = b
√
n+ 1c− 1

ln = n− b
√
n+ 1c2 + 1

the reasoning being exactly the same as in Problem 84. We break the desired sum down
into two sums:

n∑
i=1

i
⌊√
i
⌋

= S1 + S2

92

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run.

Let us first compute S1.

S1 = 1.(1+ 2+ 3) + 2.(4+ 5+ 6+ 7+ 8) + 3.(9+ 10+ 11+ 12+ 13+ 14+ 15)

+ 4.(16+ 17+ 18+ 19+ 20+ 21+ 22+ 23+ 24)

+ 5.(25+ 26+ 27+ 28+ 29+ 30+ 31+ 32+ 33+ 34+ 35)

+ . . .

+ kn

(
k2

n + (k2
n + 1) + (k2

n + 2) + . . .+ ((kn + 1)2 − 1)︸ ︷︷ ︸
k2

n+2kn

)

=

kn∑
i=1

i

i2+2i∑
j=i2

j

=

kn∑
i=1

i

i2+2i∑
j=1

j−

i2−1∑
j=1

j


=

kn∑
i=1

i

(
(i2 + 2i)(i2 + 2i+ 1)

2
−

(i2 − 1)i2

2

)

=
1

2

kn∑
i=1

i
(
i4 + 2i3 + i2 + 2i3 + 4i2 + 2i− i4 + i2

)
=
1

2

kn∑
i=1

i
(
4i3 + 6i2 + 2i

)
= 2

kn∑
i=1

i4 + 3

kn∑
i=1

i3 +

kn∑
i=1

i2 apply (4.22), (4.23), and (4.24)

= 2
kn(kn + 1)(2kn + 1)(3k2

n + 3kn − 1)

30
+ 3

k2
n(kn + 1)2

4
+
kn(kn + 1)(2kn + 1)

6

=
kn(kn + 1)

2

(
(4kn + 2)(3k2

n + 3kn − 1)

15
+
3kn(kn + 1)

2
+
2kn + 1

3

)
=
kn(kn + 1)

60

(
(8kn + 4)(3k2

n + 3kn − 1) + 45kn(kn + 1) + 20kn + 10
)

=
kn(kn + 1)

60

(
24k3

n + 24k2
n − 8kn + 12k2

n + 12kn − 4+ 45k2
n + 45kn + 20kn + 10

)
=
kn(kn + 1)

60

(
24k3

n + 81k2
n + 69kn + 6

)
=
kn(kn + 1)(8k3

n + 27k2
n + 23kn + 2)

20
(4.8)

93

Substitute kn with b
√
n+ 1c− 1 in (4.8) to obtain

S1 =
1

20
b
√
n+ 1c(b

√
n+ 1c− 1)

(
8(b

√
n+ 1c− 1)3+

27(b
√
n+ 1c− 1)2 + 23(b

√
n+ 1c− 1) + 2

)
=
1

20
b
√
n+ 1c(b

√
n+ 1c− 1)

(
8b
√
n+ 1c3 − 24b

√
n+ 1c2 + 24b

√
n+ 1c− 8

27b
√
n+ 1c2 − 54b

√
n+ 1c+ 27+ 23b

√
n+ 1c− 23+ 2

)
=
1

20
b
√
n+ 1c(b

√
n+ 1c− 1)

(
8b
√
n+ 1c3 + 3b

√
n+ 1c2 − 7b

√
n+ 1c− 2

)
Clearly, S1 = Θ

(
n

5
2

)
. Now we compute S2. It has ln terms, the first term is (kn + 1)3,

and the difference between every two consecutive terms is (kn + 1).

S2 =

ln∑
i=1

(kn + 1)3 + (i− 1)(kn + 1)

= (kn + 1)3
ln∑
i=1

1+ (kn + 1)

ln∑
i=1

(i− 1)

= (kn + 1)3ln +
(kn + 1)(ln − 1)ln

2

= b
√
n+ 1c3(n− b

√
n+ 1c2 + 1) +

b
√
n+ 1c(n− b

√
n+ 1c2)(n− b

√
n+ 1c2 + 1)

2

Clearly, S2 = O
(
n

5
2

)
, therefore S1 + S2 = Θ

(
n

5
2

)
+O

(
n

5
2

)
= Θ

(
n

5
2

)
.

Let us denote b
√
n+ 1c by ñ. It follows that

S1 =
ñ(ñ− 1)(8ñ3 + 3ñ2 − 7ñ− 2)

20

S2 = ñ3(n− ñ2 + 1) +
ñ(n− ñ2)(n− ñ2 + 1)

2

and
n∑

i=1

i
⌊√
i
⌋

=
ñ(ñ− 1)(8ñ3 + 3ñ2 − 7ñ− 2)

20
+ ñ3(n− ñ2 + 1) +

ñ(n− ñ2)(n− ñ2 + 1)

2

(4.9)

and
n∑

i=1

i
⌊√
i
⌋

= Θ
(
n

5
2

)
(4.10)

�

Problem 87. Find a closed formula for
n∑

i=1

i
⌈√
i
⌉

94

Solution:
The solution of this problem is quite similar to the solution of Problem 85. We sum the
first n terms of a series, the series being the one mentioned in the solution of Problem 85
with each term multiplied by its position. Consider for example n = 17. The terms whose
positions are perfect squares are boxed.

17∑
i=1

i
⌈√
i
⌉

= 1︸︷︷︸
run 1

+ 4+ 6+ 8︸ ︷︷ ︸
run 2

+ 15+ 18+ 21+ 24+ 27︸ ︷︷ ︸
run 3

+ 40+ 44+ 48+ 52+ 56+ 60+ 64︸ ︷︷ ︸
run 4

+ 85︸︷︷︸
run5

Unlike Problem 85, now the runs consist of those consecutive terms whose differences are
equal (and equal to the number of the run). Just as in Problem 85, all the runs but the last
one are complete, the last run being either complete or incomplete. We denote the number
of the complete runs with s(n) and

s(n) = b
√
nc

the reasoning being exactly the same as in Problem 85. The number of terms in the
incomplete run is

t(n) = n− b
√
nc2

We break the desired sum down into two sums:

n∑
i=1

i
⌈√
i
⌉

= S1 + S2

where S1 is the sum of the terms of the complete runs and S2, of the incomplete run.

95

Let us first compute S1.

S1 = 1.1+ 2.(2+ 3+ 4) + 3.(5+ 6+ 7+ 8+ 9)

+ 4.(10+ 11+ 12+ 13+ 14+ 15+ 16)

+ 5.(17+ 18+ 19+ 20+ 21+ 22+ 23+ 24+ 25)

+ . . .

+ sn
(
((sn − 1)2 + 1) + ((sn − 1)2 + 2) + . . .+ s2n︸ ︷︷ ︸

(sn−1)2+2sn−1

)

=

sn∑
i=1

i

2i−1∑
j=1

(i− 1)2 + j (4.11)

=

sn∑
i=1

i

2i−1∑
j=1

(i− 1)2 +

2i−1∑
j=1

j


=

sn∑
i=1

i

(
(i− 1)2(2i− 1) +

(2i− 1)2i

2

)

=

sn∑
i=1

i
(
(i2 − 2i+ 1)(2i− 1) + 2i2 − i

)
=

sn∑
i=1

i(2i3 − i2 − 4i2 + 2i+ 2i− 1+ 2i2 − i)

=

sn∑
i=1

i(2i3 − 3i2 + 3i− 1)

= 2

sn∑
i=1

i4 − 3

sn∑
i=1

i3 + 3

sn∑
i=1

i2 −

sn∑
i=1

i apply (4.21), (4.22), (4.23), and (4.24)

= 2
sn(sn + 1)(2sn + 1)(3s2n + 3sn − 1)

30
− 3

s2n(sn + 1)2

4
+

3
sn(sn + 1)(2sn + 1)

6
−
sn(sn + 1)

2

=
sn(sn + 1)

2

(
2(2sn + 1)(3s2n + 3sn − 1)

15
−
3sn(sn + 1)

2
+
6sn + 3

3
− 1

)
(4.12)

96

Simplify (4.12) to obtain

sn(sn + 1)

2

(
12s3n + 12s2n − 4sn + 6s2n + 6sn − 2

15
−
3s2n + 3sn

2
+
6sn + 3

3
− 1

)
=

sn(sn + 1)

2

(
24s3n + 36s2n + 4sn − 4

30
−
45s2n + 45sn

30
+
60sn + 30

30
−
30

30

)
=

sn(sn + 1)

60
(24s3n + 36s2n + 4sn − 4− 45s2n − 45sn + 60sn + 30− 30) =

sn(sn + 1)(24s3n − 9s2n + 19sn − 4)

60
=

b
√
nc(b

√
nc+ 1)(24b

√
nc3 − 9b

√
nc2 + 19b

√
nc− 4)

60

Clearly, S1 = Θ
(
n

5
2

)
. Now we compute S2. It has tn terms, the first term is (s2n+1)(sn+1),

and the difference between every two consecutive terms is (sn + 1).

S2 =

tn∑
i=1

(s2n + 1)(sn + 1) + (i− 1)(sn + 1) =

= (s2n + 1)(sn + 1)

tn∑
i=1

1+ (sn + 1)

tn∑
i=1

(i− 1)

= tn(s2n + 1)(sn + 1) +
(sn + 1)(tn − 1)tn

2
=

=
tn(sn + 1)

2

(
2s2n + 2+ tn − 1

)
=

=
tn(sn + 1)(2s2n + tn + 1)

2

=
(n− b

√
nc2)(b

√
nc+ 1)(2b

√
nc2 + n− b

√
nc2 + 1)

2

=
(n− b

√
nc2)(b

√
nc+ 1)(n+ b

√
nc2 + 1)

2

Clearly, S2 = O
(
n

5
2

)
, therefore S1 + S2 = Θ

(
n

5
2

)
+O

(
n

5
2

)
= Θ

(
n

5
2

)
. It follows that

n∑
i=1

i
⌊√
i
⌋

=
b
√
nc(b

√
nc+ 1)(24b

√
nc3 − 9b

√
nc2 + 19b

√
nc− 4)

60
+

(n− b
√
nc2)(b

√
nc+ 1)(n+ b

√
nc2 + 1)

2
(4.13)

and

n∑
i=1

i
⌈√
i
⌉

= Θ
(
n

5
2

)
(4.14)

�

97

Fact: The Fibonacci numbers are the natural numbers defined by the recurrence relation

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2, for all n > 1

The first several elements of the sequence are

0, 1, 1, 2, 3, 5, 8, 13, 21, . . .

The asymptotic growth rate of Fn is determined by the following equality [GKP94, pp. 300]

Fn =

⌊
φn

√
5

+
1

2

⌋
=
φn

√
5
, rounded to the nearest integer

where φ = 1+
√

5
2 is the so called “golden ratio”, the positive root of φ2 = φ + 1. Clearly,

for any positive constant c,

cFn = Θ

(
c

φn
√

5

)
= Θ

(
kφn

)
, where k = c

1√
5 (4.15)

�

Fact: The harmonic series

1+
1

2
+
1

3
+
1

4
+ . . . =

∞∑
i=1

1

i

is divergent. Its nth partial sum is denoted by Hn.

Hn =
1

1
+
1

2
+
1

3
+ . . .+

1

n− 1
+
1

n
(4.16)

It is known that

Hn = Θ(lgn) (4.17)

Furthermore, lnn < Hn < lnn+ 1 for n > 1. For details, see [GKP94, pp. 272–278]. �

Fact: The sum of the first kth powers for some integer constant k ≥ 1 is

1k + 2k + . . .+ nk =

n∑
i=0

ik (4.18)

It is well known that

n∑
i=0

ik =
1

k+ 1

k∑
j=0

(
k+ 1

j

)
Bj(n+ 1)k+1−j (4.19)

98

where Bj is the jth Bernoulli number. The Bernolli numbers are defined with the recurrence

B0 = 1

Bm = −
1

m

m−1∑
j=0

(
m+ 1

j

)
Bj, for m ∈ N+

For details on the summation formula (4.19) and plenty of information on the Bernoulli
numbers, see [GKP94, pp. 283–290]. Just keep in mind that Knuth et al. denote the sum
by Sk(n) and define it as

Sk(n) = 0k + 1k + 2k + . . .+ (n− 1)k

For our purposes in this manual it is sufficient to know that

1k + 2k + . . .+ nk = Θ(nk+1) (4.20)

which fact follows easily from (4.19). In fact, (4.19) is a polynomial of degree k + 1 of
n because the

(
k+1

j

)
factor and the Bernoulli numbers are just constants and clearly the

highest degree of n is k+1. Strictly speaking, we have not proved here formally that (4.19)
is a degree k + 1 polynomial of n because we have not shown that the coefficient before
nk+1 is not zero. But that is indeed the case—see for instance [GKP94, (6.98), pp. 288].

Be careful to avoid the error of thinking that❢❢ NB ❢❢

1k + 2k + . . .+ nk

is a degree k polynomial of n and thus erroneosly concluding that its order of growth is
Θ(nk). It is not a polynomial of n because a polynomial has an a priori fixed number of
terms, while the above sum has n terms where n is the variable.

Using (4.19), we can easily derive

1+ 2+ . . .+ n =
n(n+ 1)

2
(4.21)

12 + 22 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
(4.22)

13 + 23 + . . .+ n3 =
n2(n+ 1)2

4
(4.23)

14 + 24 + . . .+ n4 =
n(n+ 1)(2n+ 1)(3n2 + 3n− 1)

30
(4.24)

�

Problem 88. Let T be a binary heap of height h vertices. Find the minimum and maixmum
number of vertices in T .

Solution:
The vertices of any binary tree are partitioned into levels, the vertices from level number i
being the ones that are at distance i from the root. By definition, every level i in T , except
possibly for level h, is complete in the sense it has all the 2i vertices possible. The last

99

level (number h) can have anywhere between 1 and 2h vertices inclusive. If n denotes the
number of vertices in the heap, it is the case that

20 + 21 + 22 + . . .+ 2h−1︸ ︷︷ ︸
the number of vertices in the complete levels

+1 ≤ n ≤ 20 + 21 + 22 + . . .+ 2h−1︸ ︷︷ ︸
the number of vertices in the complete levels

+2h

Since 20 + 21 + 22 + . . .+ 2h−1 = 2h−1
2−1 = 2h − 1, it follows that

2h − 1+ 1 ≤ n ≤ 2h − 1+ 2h

2h ≤ n ≤ 2h+1 − 1 (4.25)

�

Problem 89. Let T be a binary heap with n vertices. Find the height h of T .

Solution:

2h ≤ n ≤ 2h+1 − 1 see Problem 88, (4.25)

2h ≤ n < 2h+1

h ≤ lgn < h+ 1 take lg of both sides

Clearly,

h = blgnc (4.26)

�

Problem 90. Let T be a binary heap with n vertices. Find the number of leaves and the
number of internal vertices of T .

Solution:
Let h be the height of T . We know (4.26) that h = blgnc. Let V ′ be the vertices of T
at level h. Let T ′′ be obtained from T by deleting V ′ (see Figure 4.2). Clearly, T ′′ is a
complete binary tree of height h− 1 = blgnc− 1. The number of its vertices is

2blg nc−1+1 − 1 = 2blg nc − 1 (4.27)

It follows

|V ′| = n− (2blg nc − 1) = n+ 1− 2blg nc (4.28)

The vertices at level h− 1 are 2h−1 = 2blg nc−1. Those vertices are partitioned into V ′′, the
vertices that have no children, and V ′′′, the vertices that have a child or two children (see
Figure 4.2). So,

|V ′′| + |V ′′′| = 2blg nc−1 (4.29)

100

h− 1 h

V ′

V ′′

T ′′

V ′′′

Figure 4.2: The heap in Problem 90.

Note that |V ′′′| =
⌈

|V ′|
2

⌉
. Having in mind (4.28), it follows that

|V ′′′| =

⌈
n+ 1− 2blg nc

2

⌉
=

⌈
n+ 1

2
−
2blg nc

2

⌉
=

⌈
n+ 1

2
− 2blg nc−1

⌉
=⌈

n+ 1

2

⌉
− 2blg nc−1 since 2blg nc−1 is integer (4.30)

Use (4.29) and (4.30) to conclude that

|V ′′| = 2blg nc−1 −

(⌈
n+ 1

2

⌉
− 2blg nc−1

)
= 2blg nc−1 −

⌈
n+ 1

2

⌉
+ 2blg nc−1

= 2.2blg nc−1 −

⌈
n+ 1

2

⌉
= 2blg nc −

⌈
n+ 1

2

⌉
(4.31)

It is obvious the leaves of T are V ′ ∪ V ′′. Use (4.28) and (4.31) to conclude that

|V ′| + |V ′′| = n+ 1− 2blg nc + 2blg nc −

⌈
n+ 1

2

⌉
= n+ 1−

⌈
n+ 1

2

⌉
= n+ 1+

⌊
−
n+ 1

2

⌋
=

⌊
n+ 1−

n+ 1

2

⌋
since n+ 1 is integer

=

⌊
n+ 1

2

⌋
=
⌈n
2

⌉
(4.32)

101

Then the internal vertices of T must be
⌊

n
2

⌋
sincem =

⌊
m
2

⌋
+
⌈

m
2

⌉
for any natural numberm.

�

102

Chapter 5

Acknowledgements

I express my gratitude to Zornitsa Kostadinova and Iskren Chernev for all the errors and
typos they discovered and corrected in this manual.

103

Bibliography

[AB98] Mohamad Akra and Louay Bazzi. On the solution of linear recurrence equations.
Computational Optimization and Applications, 10(2):195–210, 1998.

[CLR00] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to
Algorithms. McGraw-Hill Book Company, first edition, 2000.

[GKP94] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Mathemat-
ics. Addison-Wesley, second edition, 1994.

[KMP77] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern matching in strings.
SIAM Journal on Computing, 6:323–350, 1977.

[Knu73] Donald E. Knuth. The Art of Computer Programming, volume 1. Addison-Wesley
Publishing Company, second edition, 1973.

[Lei96] Leighton. Note on Better Master Theorems for Divide-and-Conquer Recurrences,
1996. Available online at http://courses.csail.mit.edu/6.046/spring04/
handouts/akrabazzi.pdf.

[Slo] N. J. Sloane. The on-line encyclopedia of integer sequences. maintained by N.
J. A. Sloane njas@research.att.com, available at http://www.research.att.
com/~njas/sequences/.

104

