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CROSSING NUMBER IS NP-COMPLETE*

M. R. GAREY- AND D. S. JOHNSONt

Abstract. In this paper we consider a problem related to questions of optimal circuit layout: Given a
graph or network, how can we embed it in a planar surface so as to minimize the number of edge-crossings?
We show that this problem is NP-complete, and hence there is not likely to be any efficient way to design
an optimal embedding.

A fundamental concept in graph theory is that of the crossing number u(G) of a
graph G (V, E). This is the least integer K such that G can be embedded in the
plane so that there are no more than K pair-wise intersections of curves representing
edges (not counting the required intersections at common endpoints). Recent work
by Leighton [4] has shown that the crossing number of a graph can be used to obtain
a lower bound on the amount of chip area required by that graph in a VLSI (very
large scale integration) circuit layout, and the relevance of crossings to older tech-
nologies, such as printed circuits, has been discussed by Sinden [5].

There already exist efficient, linear-time algorithms for testing whether a graph
has crossing number u(G)= 0, i.e., for testing whether a graph is planar [3]. In this
paper we show that the general CROSSING NUMBER decision problem "Given G
and an integer K is u(G) -<_K?" is NP-complete [1] and hence likely to be intractable.
As a consequence, future research into crossing numbers will be justified in focusing
on inexact methods that only estimate crossing numbers, and the quest for exact values
of u(G) will have to be restricted to promising special cases.

As defined, CROSSING NUMBER is in NP. One need only guess the K or
fewer crossings (and the order in which they occur along edges involved in more than
one crossing), create a new "crosspoint" vertex for each, replace each edge involved
in one or more crossings by a path that contains all the crosspoint vertices associated
with that edge in the appropriate order, and then test the resulting graph for planarity.
Note that the above approach also allows us, for any fixed value of K, to test whether
u(G) <=K in polynomial time (the degree of the polynomial depending on K).

To prove that CROSSING NUMBER is NP-complete, we must show that a
known NP-complete problem can be transformed to it. Our "known" NP-complete
problem will be OPTIMAL LINEAR ARRANGEMENT [2]" "Given a graph G
(V, E) and an integer K, is there a one-to-one function f: V {1, 2, , VI} such that

We transform OPTIMAL LINEAR ARRANGEMENT to CROSSING NUMBER
via an intermediate problem, which we shall call BIPARTITE CROSSING NUMBER:
"Given a connected bipartite multigraph G (V1, V2, E) and an integer K, can G be
embedded in a unit square so that all vertices of V1 are on the northern boundary,
all vertices in V2 are on the southern boundary, all edges are within the square and
there are at most K crossings?"

LEMMA 1. OPTIMAL LINEAR ARRANGEMENTecBIPARTITE CROSS-
ING NUMBER.

* Received by the editors March 29, 1982, and in revised form August 20, 1982.
Bell Laboratories, Murray Hill, New Jersey 07974.
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CROSSING NUMBER IS NP-COMPLETE 313

Proof. Suppose we are given an instance G (V, E), K of OPTIMAL LINEAR
ARRANGEMENT, where V={ul, uz,"’, un}. We may assume without loss of
generality that G is connected. The corresponding instance of BIPARTITE CROSS-
ING NUMBER is G’= (VI, Vz, E1 [AF_.z), K’, where

V1 {Ui 1 =<i =<n},

V2 {wi l<-_i<-n},

Ex {]E]z copies of {ui, wi} 1 <- <- n },

Ez {{ui, wi} <i and{v/, vi} E},

K’= IEIZ(K- IEI) + (IEI=- 1).

Note that both G’ and K’ are constructible in polynomial time, given G and K. Note
also that G’ is connected because G is. We must show that the answer for G, K is
yes if and only if the answer for G’, K’ is also yes.

Suppose first that the desired ordering function f exists for G. Then we can
construct the following layout of O’. Suppose the corners of the unit square have
coordinates (0, 0), (0, 1), (1, 0) and (1, 1). We place each U V1 at position (1, f(vi)/n)
and each w V2 at position (0, f(vi)/n), 1 <= <-_ n. We then embed the multiple edges
joining pairs {u, w} so that none cross, as in Fig. 1. Each edge {ui, wi} E2 will then
cross (If(vi)-f(v)[-1). IE]2 edges of Ex and the total number of crossings of edges
in E1 with edges in E2 will be at most

E (If(u)-f(v)l- 1). IEIz <= (K -IEI)" IEIz.
{u,v}E

(0,1)

(0,0)

FIG. 1. Embedding for Lemma 1.

Since the total number of crossings between edges in E2 is less than (IE[2-1), we
conclude that the overall number of edge-crossings is at most K’.

Conversely, suppose the desired embedding of G’ into the unit square exists. It
naturally defines two one-to-one functions fx, f2:V {1, 2,..., VI} determined by
the orderings of the vertices of Vx and V2 from left to right along their respective
boundaries. These functions must be identical, since if fl(Vi) <fl(V/) and f2(vi)
the embedding would contain at least [El4 crossings of edges {ui, w} with edges {ui, w.},
a contradiction of our bound on the number of crossings in the embedding. Thus the
embedding looks like the one pictured in Fig. 1 and each edge {u, wi} E2 must be
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314 M.R. GAREY AND D. S. JOHNSON

involved in at least (If(vi)-f(v)l- 1). IEI= crossings. From this we conclude that

Y’. (]fl(u)-fl(v)]- 1)’[E[2=<K’= (K-IEI)’IEI=/(IEI=-
which implies that

E (If(u)-f(v)[- 1)<=K-IE[,
{u,v}eE

and so fl will serve as the desired ordering for G. This completes the proof of the
lemma.

LMMa 2. BIPARTITE CROSSING NUMBERocCROSSING NUMBER.
Proof. We actually give a transformation to the version of CROSSING NUMBER

where multigraphs are allowed. The final step to CROSSING NUMBER for graphs
with no multiple edges allowed is obtained by simply adding a new degree-two vertex
into the middle of each (multiple) edge, which eliminates the multiple edges without
affecting the crossing number.

Suppose we are given an instance G (Vx, V, E), K of BIPARTITE CROSSING
NUMBER. It is easy to construct the following multigraph G’ (V’, ELI E1 LI E2 E3)
in polynomial time, where

V’= V t.J V t_J (u0, Wo},

E1 {3K + 1 copies of {Uo, u}:u V1},

E2 {3K + 1 copies of {Wo, w}:w V2},

E3 {3K + 1 copies of {u0, Wo}}.
We claim that G has an embedding of the required form into the unit square (with
K or fewer crossings) if and only if G’ can be embedded in the plane with K or fewer
crossings (the same K for both instances).

First, suppose the desired embedding of G into the unit square exists. Fig. 2
shows how the extra vertices and edges of G’ can be added to the embedding (by
being placed outside the unit square) with no increase in crossings.

I.I o

IIt0
FIG. 2. Embedding for Lemma 2.
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CROSSING NUMBER IS NP-COMPLETE 315

We now wish to argue that if the desired embedding of G’ exists, there must be
one whose form is just like that of Fig. 2. We proceed by a series of "normal form"
simplifications.

Normalization 1. We may assume that each pair of edges crosses either 0 or 1
times and edges which share an endpoint do not cross at all. (This is easily proved
using the transformation illustrated in Fig. 3, which always decreases the total number
of crossings.) Thus each set of 3K + 1 multiple edges can be viewed as creating an
ordered sequence of 3K bounded regions.

t
I

/
\\

/’,, / /’\ \

FIG. 3. Removing multiple crossings.

Normalization 2. The edges of E1 divide the plane into a collection of regions,
one of which is unbounded. By a standard transformation, we may assume that w0 is
inside (in the interior of) the unbounded region. Then, since each vertex in V2 is
connected by 3K + 1 edges to Wo, all these vertices must be inside the unbounded
region too (if any such vertex were in a different region, it would introduce at least
3K + 1 crossings, which is too many).

Normalization 3. We may assume that no vertex is inside any of the 3K regions
formed by the edges (Uo, u }, for any fixed u Vx and that no edge crosses any of these
3K + 1 edges. We may also assume that the same properties hold for the 3K regions
formed by the edges {w0, w}, for any fixed w V2. We shall prove this for the case
of {u0, u}; the other case follows analogously.

From Normalization 2 none of the 3K regions bounded by edges {u0, u} can
contain a vertex from V2 U {w0}. Thus an interior vertex, if it exists, must be from V1.
First let us make two observations about the middle K regions.

(a) No vertex from Vx can be contained in any of the central K regions: such a
vertex would have an edge to some vertex in V2 since G is connected and that edge
would have at least K + 1 crossings.

(b) No edge can cross any of the K middle regions: such an edge would have to
cross all K regions if it crossed any, since by Normalization 1 it cannot double back,
and by (a) its end-points must be at least K regions (and hence K + 1 boundary edges)
apart.
Given (a) and (b), it follows that we can transform the embedding, by moving all
edges joining Uo and u into the interior of a single one of the middle regions, and no
new crossing will be created. As a result, all vertices other than u0 and u are left on
the outside, and no edge will cross any of the boundaries.

Note that at this point we have obtained an embedding which is topologically
equivalent to one like that in Fig. 2, except possibly for the edges in the original set
E and the 3K + 1 edges joining u0 to w0.
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316 M. R. GAREY AND D. S. JOHNSON

Normalization 4. We may assume that all of the vertices in V1 [,.J V2 and all of
the edges in E are contained inside the same one of the 3K bounded regions formed
by the edges joining Uo to w0.

Let us begin our proof of this claim by numbering the bounded regions in order,
R through R3:, with R0 being the unbounded region. Suppose there is a vertex u
inside region RI. Then there can be no vertex u’ in regions R1+K+X(mod3K+l) through
RI+2K(mod3K+l). This is because there was a path in our original graph from u to u’,
and this path would have to cross at least K + 1 of the edges {u0, w0} if u’ were in
one of the prescribed regions. Consequently, as in claim (b) of the proof of Normaliz-
ation 3, there can be no edges passing through any of these K regions. Thus, as in
Normalization 3 we can move all the edges joining Uo to Wo into just one of these
empty regions, without creating any new crossings. This leaves V1, V2 and all of E
in the single unbounded region. Now a simple transformation sends our embedding
to one in which all of G is contained within the same bounded region.

Finalization. At this point we are done with the proof of Lemma 2, for the
embedding created by our four normalizations is now topologically equivalent to one
in the form of Fig. 2 and hence induces the desired embedding of G into the unit
square.

The main theorem of this paper (and its title) follow as an immediate consequence
of Lemmas 1 and 2.

Acknowledgment. The authors thank Gary Miller and Tom Leighton for sugges-
tions that improved the presentation of this result.
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