

History

 Foreangle

m m ${ }^{\text {a }}$	1	2	3	4	5	6	7	8
	4	1						
41	11	11	1					
51	${ }_{57}^{26}$	${ }_{312}^{60}$	${ }_{302}^{26}$					
	120	119	2416	191				
81 9 9	${ }_{502}^{247}$	${ }_{1}^{4} 4.4888$	$\underbrace{\substack{\text { den }}}_{\substack{15619 \\ 8824}}$					

Explicit formula

Summation properties

$\sum_{n=0}^{n-1} A(n, m)=n!$ tor $n \geq 1$.
$\sum_{m=0}^{n-1}(-1)^{m)^{4}(n, m)}=\frac{\left.r^{n+1}\left(2^{n+1}-1\right)\right)_{n+1}}{n+1}$ bor $n \geq 1$

$\sum_{n=0}^{n-1}(-1)^{m} \frac{(A n, m)}{(m)}=(n+1) B_{n}$ or $n \geq 2$,

 $x^{n}=\sum_{m=0}^{n-1} A(n, m)\left(\begin{array}{c}\binom{x+m}{n}\end{array}\right.$
 $\frac{e}{1-c x}=\sum_{n=0}^{\infty} \frac{A_{1}(x)}{n(1-x)^{n+1}}$.

Eulerian numbers of the second kind										
332211,221133, 221331, 223311, 233211, 113322, 133221, 331122, 331221,112233, 122133, 112332, 123321, 133122, 122331.										
$\left.\left.\left.\left\langle\begin{array}{l}n \\ m\end{array}\right\rangle\right\rangle=(2 n-m-1)\left\langle\begin{array}{c}n-1 \\ m-1\end{array}\right\rangle\right\rangle+(m+1)\left\langle\begin{array}{c}n-1 \\ m\end{array}\right\rangle\right\rangle$,										
$\left\langle\left\langle{ }^{0}\right\rangle{ }_{n}\right\rangle=m=0$,										
$\left.P_{r=(x)}=\sum_{m=0}^{n}\left\langle\begin{array}{l}n \\ m\end{array}\right\rangle\right\rangle^{n}$										
and the above recurrence relations are translated into a r$P_{n+1}(x)=(2 n x+1) P_{n}(x)-x(x-1) P_{n}(x)$										
with initid contion $P_{0}(\mathrm{~d})=1$.										
$\qquad$$(x-1)^{-2-2-2-2 P_{n+1}(x)}=\left(x(1-x)^{2 m-1}-P_{n}(x)\right)^{\prime}$										
sob hat turestional function										
whence one obtains the Eulerian polynomi econd kind as their coefficients.										
${ }_{\text {m }}$,	${ }^{1}$	2				5	6			
	2									
4		${ }_{58}^{6}$								
5	S	${ }_{\substack{38 \\ 182}}^{188}$	${ }_{4}^{44}$							
		${ }_{5610}^{1482}$	${ }_{3}^{4200}$		(108	${ }_{\text {l }}^{120}$				
	${ }_{\substack{494 \\ 1094}}^{\substack{\text { cos }}}$	${ }_{\substack{19350 \\ 620}}$	${ }^{10385}$	Sob 6 che		${ }^{785394}$	${ }^{3}$			

External links

$: 5$

