
In  mathematics,  the  telephone  numbers  or  the  involution

numbers are a sequence of integers that count the ways n telephone

lines can be connected to each other, where each line can be connected

to at most one other line. These numbers also describe the number of

matchings (the Hosoya index) of a complete graph on n vertices, the

number of permutations on n elements that are involutions, the sum

of  absolute  values  of  coefficients  of  the  Hermite  polynomials,  the

number of standard Young tableaux with n cells, and the sum of the

degrees  of  the  irreducible  representations  of  the  symmetric  group.

Involution  numbers  were  first  studied in  1800 by  Heinrich  August

Rothe,  who  gave  a  recurrence  equation  by  which  they  may  be

calculated,[1] giving the values (starting from n = 0)

1, 1, 2, 4, 10, 26, 76, 232, 764, 2620, 9496, ...
(sequence A000085 in the OEIS).
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John Riordan provides  the following explanation for these  numbers: suppose  that a telephone service  has  n
subscribers, any two of whom may be connected to each other by a telephone call. How many different patterns of

connection are possible? For instance, with three subscribers, there are three ways of forming a single telephone

call, and one additional pattern in which no calls are being made, for a total of four patterns.[2] For this reason, the

numbers counting how many patterns are possible are sometimes called the telephone numbers.[3][4]

Every  pattern  of  pairwise  connections  between  n  subscribers  defines  an  involution,  a  permutation  of  the

subscribers that is its own inverse, in which two subscribers who are making a call to each other are swapped with

each other and all remaining subscribers stay in place. Conversely, every possible involution has the form of a set

of pairwise swaps of this type. Therefore, the telephone numbers also count involutions. The problem of counting

involutions was the original combinatorial enumeration problem studied by Rothe in 1800[1] and these numbers

have also been called involution numbers.[5][6]

In graph theory, a subset of the edges of a graph that touches each vertex at most once is called a matching. The

number of different matchings of a given graph is important in chemical graph theory, where the graphs model

molecules and the number of matchings is known as the Hosoya index. The largest possible Hosoya index of an

n-vertex graph is given by the complete graphs, for which any pattern of pairwise connections is possible; thus,

the Hosoya index of a complete graph on n vertices is the same as the nth telephone number.[7]

A Ferrers  diagram is  a geometric shape formed by a collection of  n
squares in the plane, grouped into a polyomino with a horizontal top

edge, a vertical left edge, and a single monotonic chain of horizontal

and  vertical  bottom  and right  edges.  A  standard  Young  tableau  is

formed by placing the numbers from 1 to n into these squares in such

a way that the  numbers  increase from left  to  right and from top to

bottom throughout the tableau. According to the Robinson–Schensted

correspondence,  permutations  correspond one-for-one  with  ordered

pairs of standard Young tableaux. Inverting a permutation corresponds

to  swapping the  two tableaux, and so  the  self-inverse  permutations

correspond to single tableaux, paired with themselves.[8] Thus, the telephone numbers also count the number of

Young tableaux with n squares.[1] In representation theory, the Ferrers diagrams correspond to the irreducible

representations of the symmetric group of permutations, and the Young tableaux with a given shape form a basis

of the irreducible representation with that shape. Therefore, the telephone numbers give the sum of the degrees

of the irreducible representations.

In  the  mathematics  of  chess,  the  telephone  numbers  count  the

number of ways to place n rooks on an n × n chessboard in such a

way that no two rooks attack each other (the so-called eight rooks

puzzle), and in such a way that the configuration of  the rooks is

symmetric under a diagonal reflection of the board. Via the Pólya

enumeration  theorem,  these  numbers  form  one  of  the  key

components  of  a  formula for the  overall  number of  "essentially

different" configurations of n mutually non-attacking rooks, where

two configurations are counted as essentially different if  there is

no symmetry of the board that takes one into the other.[9]

The telephone numbers satisfy the recurrence relation

first published in 1800 by Heinrich August Rothe, by which they may easily be calculated.[1] One way to explain

this recurrence is to partition the T(n) connection patterns of the n subscribers to a telephone system into the

patterns in which the first subscriber is not calling anyone else, and the patterns in which the first subscriber is

making a call. There are T(n − 1) connection patterns in which the first subscriber is disconnected, explaining the

first term of the recurrence. If the first subscriber is connected to someone else, there are n − 1 choices for which

other subscriber they are connected to, and T(n − 2) patterns of connection for the remaining n − 2 subscribers,

explaining the second term of the recurrence.[10]

The telephone numbers may be expressed exactly as a summation

In each term of this sum, k gives the number of matched pairs, the binomial coefficient  counts the number

of ways of choosing the 2k  elements to be matched, and the double factorial (2k − 1)!! = (2k)!/(2kk!)  is  the

product of the odd integers up to its argument and counts the number of ways of completely matching the 2k
selected elements.[1][10] It follows from the summation formula and Stirling's approximation that, asymptotically,

[1][10][11]

The exponential generating function of the telephone numbers is

[10][12]

In other words, the telephone numbers may be read off as the coefficients of the Taylor series of exp(x2/2 + x),

and the nth telephone number is the value at zero of the nth derivative of this function. This function is closely

related to the exponential generating function of the Hermite polynomials, which are the matching polynomials

of  the  complete  graphs.[12]  The  sum  of  absolute  values  of  the  coefficients  of  the  nth  (probabilist)  Hermite

polynomial is the nth telephone number, and the telephone numbers can also be realized as certain special values

of the Hermite polynomials:[5][12]

For large values of n, the nth telephone number is divisible by a large power of two, 2n/4 + O(1).

More  precisely,  the  2-adic  order  (the  number of  factors  of  two  in  the  prime  factorization)  of  T(4k)  and of

T(4k + 1) is k; for T(4k + 2) it is k + 1, and for T(4k + 3) it is k + 2.[13]

For any prime number p, one can test whether there exists a telephone number divisible by p by computing the

recurrence for the sequence of telephone numbers, modulo p, until either reaching zero or detecting a cycle. The

primes that divide at least one telephone number are

2, 5, 13, 19, 23, 29, 31, 43, 53, 59, ... (sequence A264737 in the OEIS)
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The complete graph K4 has ten
matchings, corresponding to the
value T(4) = 10 of the fourth
telephone number.
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