B8 *main.cpp [files] - Code:Blocks 16.01 — *
File Edit Wiew 5Search Project Build Debug Fortran weSmith Tools Tools+ Plugins DoxyBlocks Settings Help

‘EBBEE I UMB|ARE P G O O o v LAl B
| <global> ~ | main() : int viF | <0 [B]] S
v @ = J o dg > |} | V|‘g's
Management x
- *main.cpp >
41 | Projects | Symbaols Files » 1
QWDrkspace 2
.y files 3
- Sources 4 using namespace =td;
d main.cpp 5
5 int main()
(I =
il ofstream fail:
] fail.open("helloZ.rxL"™, ios::app):
10 fail << "c++"<<endl;
11 fail.close():
12
13 char data[l00];
14 ifstream failZz;
15 failZ.open("helloZ.LxL")
l& >
17
15 fail.close () ;
:CI IR AEN T IR
21 return 07
23 =
£ >
Logs & others b4
J| Codei:Blocks ¢ %" Build messages *| fjCscope X £y Debugger | £ Buildlog < | 4% Closed files list * | Jf|Forraninfo X
—————————————— Fun: Debug in files (compiler: CGHNU CGCC Compiler)------—-—-———--——= "~
Checking for existence: C:\UsersiMartin Iliev\Desktop‘beginning.files'binDebug'.files._ exe
Executing: "C:“\Program Files“CodeBlocks/ch console runner.exe™ "C:\Users\Martin IlievhDesktop\beginning‘files\bin\Debug'files.exe"™ (in C:\Users
“Martin IlievhDesktop'\beginningh£files’ .)
Process terminated with status 0 (0 minuteis), 1 sscond(s))
W
Ch\Users\Martin llieviDesktop\beginning\files\main.cpp Windows (CR+LF) WINDOWS-1252 Line 13, Column 20 Insert Medified Read/Write default E=S

i ENG

Section 6.1 cplusplus
language

Input/Output with files tutorial
A i

C++ has support both for input and output with files through the following classes:
s ofstream: File class for writing operations (derived from ostream)

* ifstream: File class for reading operations {derived from istream)
* fstream: File class for both reading and writing operations (derived from iostream)

Open a file

The first operation generally done on an object of one of these classes i1s to associate 1t to a real file, that 1s to sav, to open a file. The open file 1s represented within the program by a stream object
{(an instantiation of one of these classes) and any input or output performed on this streamn object will be applied to the physical file.

In order to open a file with a stream object we use its member function open():
void open {const char * filename, openmode mode);

where filename is a string of characters representing the name of the file to be opened and mode 1s a combination of the following flags:

ios::in ”Dpen file for reading

ios::out ”Dpen file for writing

|ZID

A

10

A

app ||E1.'er}' output is appended at the end of file

ios::trunc ||[f the file already existed it is erased

|
|
tate ||[nilia1 position: end of file |
|
|
ios: :binar‘},r”Bma_rj.-' mode |

These flags can be combined using bitwise operator OR: |. For example, if we want to open the file "example bin” in binary mode to add data we could do it by the following call to function-
member open:

ofstream file;
file.open ("example.bin”, ios::out | ios::spp | ios::binary);

All of the member functions open of classes ofstream, ifstream and fstream include a default mode when opening files that varies from one to the other:

|c1a55 ||default mode to pa:ameter|

|0-Fstr'eam||ios::u:uut | ios::trunc |

|iF5tr‘eaml|ios::in |

|F5tr‘eam ||ios::ir1 | ios::out |

The default value 13 only applied if the function is called without specifving a mode parameter. If the function 1s called with any value in that parameter the default mode 1s stepped on, not
combined.

Since the first task that is performed on an object of classes ofstream, ifstream and fstream 1s frequently to open a file, these three classes include a constructor that directly calls the open
member function and has the same parameters as this. This way, we could also have declared the previous object and conducted the same opening operation just by writing:

ofstream file ("example.bin™, ios::out | ios::app | ios::binary);

Both forms to open a file are valid.

You can check if a file has been correctly opened by calling the member function is_open():
bool is open();

that returns a bool type value indicating true in case that indeed the object has been correctly associated with an open file or false otherwise.

Closing a file

When reading, writing or consulting operations on a file are complete we must close 1t so that 1t becomes available again. In order to do that we shall call the member function close(), that 1s 1n
charge of flushing the buffers and closing the file. Its form is quite simple:

void close ();
Once this member function is called, the stream object can be used to open another file, and the file 15 available again to be opened by other processes.

In case that an object 1s destructed while still associated with an open file, the destructor automatically calls the member function close.

Text mode files

Classes ofstream, ifstream and fstream are derived from ostream, istream and iostream respectively. That's why fSrream objects can use the members of these parent classes to access data.

Generally, when using text files we shall use the same members of these classes that we used 1n commumnication with the console (cin and cout). As in the following example, where we use the
overloaded insertion operator <<-

£ writing on g text file

file example.txt
#include <fstream.h:> = P

This is a line.
int main () { This is another line.
ofstream examplefile {"example.txt");
if (examplefile.is open())

examplefile << "This is a line.\n";
examplefile << "This is another line.\n";
examplefile.close();

¥

return 8;

L

¥

return 8;

1
Data input from file can also be performed 1n the same way that we did with cin:

// reading a text fFile
#include <iostream.h>
#include <fstream.h>
#include <stdlib.h>

int main () {
char buffer[256];
ifstream examplefile ("example.txt"™);
if (! examplefile.is_open()})
{ cout << "Error opening file"; exit (1); }

while (! examplefile.eof())

examplefile.getline (buffer,lee);
cout << buffer << endl;

¥

return 8;

This last example reads a text file and prints out its content on the screen. Notice how we have used a new member function, called eof that ifstream inherits from class ios and that returns true
in case that the end of the file has been reached.

Verification of state flags

In addition to eof (), other member functions exist to verify the state of the stream (all of them return a bool value):

o0 Returns true if a failure occurs in a reading or writing operation. For example in case we tryv to write to a file that 1s not open for writing or if the device where we try to write has no space
-Fail(}lE&
Returns true in the same cases as bad() plus in case that a format error happens, as trving to read an integer number and an alphabetical character is recetved.
et Returns true if a file opened for reading has reached the end.
EDm‘“]t 15 the most generic: returns false in the same cases in which calling any of the previous functions would return true.

In order to reset the state flags checked by the previous member functions vou can use member function clear(), with no parameters.

gef and puf stream pointers

All 1o streams objects have, at least, one stream pointer:

s ifstream, like istream, has a pointer known as get painter that points to the next element to be read.
s ofstream, like ostream, has a pointer put pointer that points to the location where the next element has to be written.
* Finally fstream, like iostream, inherits both: ger and pur

These stream pointers that point to the reading or writing locations within a stream can be read and/or manipulated using the following member functions:

tellg() and tellp()
These two member functions admit no parameters and return a value of type pos_type (according ANSI-C++ standard) that 1s an integer data type representing the current position of get

streatn pointer (in case of tellg) or put stream pointer (in case of tellp).

seekg() and seekp()
This pair of functions serve respectively to change the position of stream pointers get and put. Both functions are overloaded with two different prototypes:

seekg (pos_type position);
seekp (pos_type position);
Using this prototype the stream pointer 1s changed to an absolute position from the beginming of the file. The tvpe required 1s the same as that returned by functions tellg and tellp.

seekg (off type offset, seekdir direction);
seekp (off_type offset, seekdir direction);
Using this prototype, an offset from a concrete point determined by parameter direction can be specified. It can be:

|ius: : beg”off'sel specified from the beginning of the stream |

offset specified from the current position of the stream poinrer|

|ius::cur|

|i05: : End”offsel specified from the end of the stream |

The values of both stream pointers gef and puf are counted in different wavs for text files than for binary files, since in text mode files some modifications to the appearance of some special
characters can occur. For that reason it 1s advisable to use only the first prototype of seekg and seekp with files opened in text mode and always use non-modified values returned by tellg or
tellp. With binarv files, vou can freelv use all the implementations for these functions. Thev should not have any unexpected behavior.

The following example uses the member functions just seen to obtain the size of a binary file:

A/ obtaining file size size of example.txt is 48 bytes.
#include <iostream.h:
#include <fstream.h:

const char ® filename = "example.txt";

int main () {
long 1,m;
ifstream file (filename, ios::in|ios::binary);
1 = file.tellg();
file.seekg (@, ios::end);
m = file.tellg();
file.close();

[T L N I = | I ol i

m = file.tellg();

file.close();

cout << "size of " << filename;

cout << " is " << (m-1) << " bytes.\n";
return @;

Binary files

In binary files inputting and outputting data with operators like << and »» and functions like getline, does not make too much sense, although they are perfectly valid.

File streams include two member functions specially designed for input and output of data sequentially: write and read. The first one (write) 15 a member function of ostream, also inherited by
ofstream. And read 1s member function of istream and 1t 1s inherited by ifstream. Objects of class fstream have both. Their prototvpes are:

write (char * buffer, streamsize size);
read (char * buffer, streamsize size);

Where buffer 1s the address of a memory block where the read data are stored or from where the data to be written are taken. The size parameter 1s an integer value that specifies the number of
characters to be read written from/to the buffer.

A/ reading binary file
#include <iostream.h>
#include <fstream.h:

const char * filename = "example.txt";

int main () {
char * buffer;
long size;
ifstream file (filenams, ios::in|ios::binary|ios::ate);
size = file.tellg();
file.seekg (@, ios::beg);
buffer = new char [size];
file.read (buffer, size);
file.close();

cout << "the complete file is in a buffer”;

delete[] buffer;
return 6;

Buffers and Synchronization

When we operate with file streams, these are associated to a duffer of type streambuf. This buffer 1s a memory block that acts as an intermediary between the stream and the physical file. For
example, with an out stream, each time the member function put (write a single character) 1s called, the character is not written directly to the phyvsical file with which the stream is associated.

Tocond Sl - e e e 4 et Lo e e

read ({ char * buffer, streamsize size);

Where buffer 1s the address of a memory block where the read data are stored or from where the data to be written are taken The size parameter 1s an integer value that specifies the number of
characters to be read/written from/to the buffer.

£/ reading binary file the complete file is in a buffer
#include <iostream.h>
#include <fstream.h>

const char * filename = "example.txt";

int main () {

char * buffer;

long size;

ifstream file (filename, ios::in|ios::binary|ios::ate);
size = file.tellg();

file.seekg (@, ios::beg);

buffer = new char [size];

file.read (buffer, size);

file.close();

cout << "the complete file is in a buffer”;

delete[] buffer;
return B8;

Buffers and Synchronization

When we operate with file streams, these are associated to a buffer of type streambuf. This buffer 1s a memory block that acts as an intenmediary between the stream and the physical file. For
example, with an out stream, each time the member function put (write a single character) 1s called, the character is not written directly to the physical file with which the stream is associated.
Instead of that, the character 1s inserted in the bujffer for that stream.

When the buffer 15 flushed, all data that it contains is written to the physic media (if it 13 an out stream) or simply erased (1f it is an in stream). This process 1s called synchronization and it takes
place under any of the following circumstances:

When the file is closed: before closing a file all buffers that have not vet been completely written or read are synchronized.

When the buffer is full: Buffers have a certain size. When the buffer 1s full 1t 1s automatically synchronized.

Explicitly with manipulators: When certain manipulators are used on streams a synchronization takes place. These manipulators are: flush and endl.

Explicitly with function sync(): Calling member function sync() (no parameters) causes an immediate syncronization. This function returns an int value equal to -1 if the stream has no
associated byffer or in case of failure.

€ The C++ Resources Metwork, 2000-20032 - AN rights reservad

Previous: ‘ |§|

5-5. Preprocessor directives. index

B8 *main.cpp [files] - Code:Blocks 16.01 — *
File Edit Wiew 5Search Project Build Debug Fortran weSmith Tools Tools+ Plugins DoxyBlocks Settings Help

EeB@ I UMBAR[E > $ S O o v L AT B
| <global> ~ | main() : int viF | <0 [B]] S
v @ = J o dg > |} | V|‘g's
Management x
- *main.cpp >
41 | Projects | Symbaols Files » 1
QWDrkspace =
.y files 3 0.h
- Sources 4 using namespace =td;
d main.cpp 5
5 int main()
(I =
g ofstream f("LoLbo.xml"™):
g if(remove ("Loto.xml"))/ lnsan
10 - {
11 cerr<<"fuck\n";
12 I]
13 f.close ()
14 if (remove ("toto.xml"™))
15 I {
16 cerr<<"fuck\n";
17 L
19
20
21 return 07
23 =
£ >
Logs & others b4
J| Codei:Blocks ¢ %" Build messages *| fjCscope X £y Debugger | £ Buildlog < | 4% Closed files list * | Jf|Forraninfo X
—————————————— Fun: Debug in files (compiler: CGHNU CGCC Compiler)------—-—-———--——= "~
Checking for existence: C:\UsersiMartin Iliev\Desktop‘beginning.files'binDebug'.files._ exe
Executing: "C:“\Program Files“CodeBlocks/ch console runner.exe™ "C:\Users\Martin IlievhDesktop\beginning‘files\bin\Debug'files.exe"™ (in C:\Users
“Martin IlievhDesktop'\beginningh£files’ .)
Process terminated with status 0 (0 minuteis), 1 sscond(s))
W
Ch\Users\Martin llieviDesktop\beginning\files\main.cpp Windows (CR+LF) WINDOWS-1252 Line 20, Column 5 Insert Medified Read/Write default E=S

9:00 AM

g f& 7 di ENG

