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class B {
public:

explicit B(int x =0, bool b =true);  // default constructor; see below
7 // for info on “explicit”

Effective C++ Introduction 5

class C{
public:
explicit C(int x); // not a default constructor

¥
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The constructors for classes B and C are declared explicit here. That
prevents them from being used to perform implicit type conversions,
though they may still be used for explicit type conversions:

void doSomething(B bObject); // a function taking an object of
// type B
B bObj1; // an object of type B
doSomething(bObj1); // fine, passes a B to doSomething
B bObj2(28); // fine, creates a B from the int 28
// (the bool defaults to true)
3 doSomething(28); // error! doSomething takes a B,

// not an int, and there is no
// implicit conversion from int to B

doSomething(B(28)); // fine, uses the B constructor to
// explicitly convert (i.e., cast) the
// int to a B for this call. (See
// Item 27 for info on casting.)

Constructors declared explicit are usually preferable to non-explicit
ones, because they prevent compilers from performing unexpected
(often unintended) type conversions. Unless I have a good reason for
allowing a constructor to be used for implicit type conversions, I
declare it explicit. I encourage vou to follow the same policv.

1:05 PM
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6 Introduction Effective C++

Read carefully when you see what appears to be an assignment, be-
cause the “=" syntax can also be used to call the copy constructor:

Widget w3 =w2; // invoke copy constructor!

Fortunately, copy construction is easy to distinguish from copy as-
signment. If a new object is being defined (such as w3 in the statement
above), a constructor has to be called: it can’t be an assignment. If no
new object is being defined (such as in the w1 =w2" statement above),
no constructor can be involved, so it's an assignment.

The copy constructor is a particularly important function, because it
defines how an object is passed by value. For example, consider this:

bool hasAcceptableQuality(Widget w);

Widaet aWidaet:

o | B @ 5
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what it allows to happen:

const CTextBlock cctb("Hello"); // declare constant object

char *pc = &cctb[0]; // call the const operator[] to get a
// pointer to cctb’s data

*pc="J}; // cctb now has the value “Jello”

Surely there is something wrong when you create a constant object
with a particular value and you invoke only const member functions
on it, yet you still change its value!

This leads to the notion of logical constness. Adherents to this philos-
ophy — and you should be among them — argue that a const member
function might modify some of the bits in the object on which it's
invoked, but only in ways that clients cannot detect. For example,
your CTextBlock class might want to cache the length of the textblock
whenever it's requested:

class CTextBlock {
public:

stdusize_t length() const;

201 PM
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Accustoming Yourself to C++

class CTextBlock {
public:

std::size_t length() const;

private:
char =pText;

mutable std:size_t textLength;
b mutable bool lengthlsValid;
%

std:size_t CTextBlock:length() const

if (lengthlsValid) {
textLength = std:strlen(pText);
lengthlsValid = true;

}

return textLength;

}

h {Wj O@® 5%

// these data members may
// always be modified, even in 4
// const member functions

// now fine
// also fine

Avoiding Duplication in const and Non-const Member Functions
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Even more worth knowing is that trying to do things the other way
around — avoiding duplication by having the const version call the
non-const version — is not something vou want to do. Remember, a
const member function promises never to change the logical state of
its object, but a non-const member function makes no such promise.
If you were to call a non-const function from a const one, you'd run the
risk that the object you'd promised not to modify would be changed.
That's why having a const member function call a non-const one is
wrong: the object could be changed. In fact, to get the code to compile,
you'd have to use a const_cast to get rid of the const on #this, a clear
sign of trouble. The reverse calling sequence — the one we used above

g — is safe: the non-const member function can do whatever it wants
with an object, so calling a const member function imposes no risk.
That's why a static_cast works on *this in that case: there's no const-
related danger.

As I noted at the beginning of this [tem, const is a wonderful thing. On
pointers and iterators; on the objects referred to by pointers, iterators,

Z10 PM
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class ABEntry { // ABEntry = “Address Book Entry” )
public:

ABEntry(const std::string& name, const std::string& address,
const std::list<PhoneNumber>& phones);
private:
std::string theName;
std::string theAddress;
std:list<PhoneNumber> thePhones;
int numTimesConsulted;

I

ABEntry::ABEntry(const std::string& name, const std::string& address,
> const std:list<PhoneNumber>& phones) <
{
theName = name; // these are all assignments,
theAddress = address; // not initializations
thePhones = phones;
numTimesConsulted = 0;

11:04 AM
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non-local static objects defined in dlftel ent translation units. How can
you be sure that tfs will be initialized before tempDir?

You can't. Again. the relative order of initialization of non-local static
objects defined in different translation units is undefined. There is a
reason for this. Determining the “proper” order in which to initialize
non-local static objects is hard. Very hard. Unsolvably hard. In its
most general form — with multiple translation units and non-local
static objects generated through implicit template instantiations
(which may themselves arise via implicit template instantiations) —
> it's not only impossible to determine the right order of initialization, y
it's typically not even worth looking for special cases where it is possi-
ble to determine the right order.

Fortunately, a small design change eliminates the problem entirely.
All that has to be done is to move each non-local static object into its
own function, where it’s declared static. These functions return refer-
ences to the objects they contain. Clients then call the functions
instead of referring to the objects. In other words, non-local static
objects are replaced with local static objects. (Aficionados of design
patterns will 1‘%Cognize this as a common implementation of the Sin-

11:15 AM
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Fortunately, a small design change eliminates the problem entirely.
All that has to be done is to move each non-local static object into its
own function, where it's declared static. These functions return refer-
ences to the objects they contain. Clients then call the functions
instead of referring to the objects. In other words, non-local static
objects are replaced with local static objects. (Aficionados of design
patterns will recognize this as a common implementation of the Sin-
gleton pattern.”)

This approach is founded on C++'s guarantee that local static objects
" are initialized when the object’s definition is first encountered during .
a call to that function. So if you replace direct accesses to non-local

t Actually, it's only part of a Singleton implementation. An essential part of Singleton [
ignore in this Item is preventing the creation of multiple objects of a particular type.

11:19 A
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static objects with calls to functions that return references to local
static objects, you're guaranteed that the references you get back will
refer to initialized objects. As a bonus, if you never call a function
emulating a non-local static object, you never incur the cost of con-
structing and destructing the object, something that can’t be said for
true non-local static objects.

Here’s the technique applied to both tfs and tempDir:

class FileSystem {... }; // as before
' FileSystem& tfs() // this replaces the tfs object; it could be !
{ // static in the FileSystem class
static FileSystem fs; // define and initialize a local static object
return fs; // return a reference to it
}
class Directory { ... }; // as before

Directory:Directory( params) // as before, except references to tfs are
{ // now to tfs()

;fd::size_t disks = tfs().numDisks();

11:21 AM
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Here's the technique applied to both tfs and tempDir:

class FileSystem { ... }; // as before
FileSystem& tfs() // this replaces the tfs object; it could be
{ // static in the FileSystem class
static FileSystem fs; // define and initialize a local static object
return fs; // return a reference to it
)
class Directory { ... }; // as before
R Directory::Directory( params) // as before, except references to tfs are <
{ // now to tfs()

'_c:"cdzzsize_t disks = tfs().numDisks():

}
Directory& tempDir() // this replaces the tempDir object; it
{ // could be static in the Directory class

static Directory td( params); // define/initialize local static object
return td; // return reference to it

11:21 AM
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compler-generated copy assignment operator should doy ~

Faced with this conundrum, C++ refuses to compile the code. If you
want to support copy assignment in a class containing a reference
member, you must define the copy assignment operator yourself.
Compilers behave similarly for classes containing const members
(such as objectValue in the modified class above). It's not legal to mod-
ify const members, so compilers are unsure how to treat them during
an implicitly generated assignment function. Finally, compilers reject
implicit copy assignment operators in derived classes that inherit
from base classes declaring the copy assignment operator private.
g After all, compiler-generated copy assignment operators for derived ¢
classes are supposed to handle base class parts, too (see Item 12), but
in doing so, they certainly can’t invoke member functions the derived
class has no right to call.

Things to Remember

+ Compilers may implicitly generate a class’s default constructor, copy
constructor, copy assignment operator, and destructor.

Item 6: Explicitly disallow the use of compiler- .

1:12 PM
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member or a Iriend function, the linKer will complain. ~

It's possible to move the link-time error up to compile time (always a
good thing — earlier error detection is better than later) by declaring
the copy constructor and copy assignment operator private not in
HomeForSale itself, but in a base class specifically designed to prevent
copying. The base class is simplicity itself:

class Uncopyable {

protected: // allow construction
Uncopyable() {} // and destruction of
~Uncopyable() {} // derived objects...
private:
Uncopyable(const Uncopyable&); // ..but prevent copying

Uncopyable& operator=(const Uncopyable&);

r

To keep HomeForSale objects from being copied, all we have to do now
is inherit from Uncopyable:

class HomeForSale: private Uncopyable { // class no longer
// declares copy ctor or
I // copy assign. operator

This works. because compilers will trv to generate a copv constructor
- : e 116 PM
[E! q Jie iz 13 EMG 712/2018 E3
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public:
TimeKeeper();
~TimeKeeper();

-

class AtomicClock: public TimeKeeper{ ... };
class WaterClock: public TimeKeeper{... };
class WristWatch: public TimeKeeper {...};

Many clients will want access to the time without worrying about the
details of how it's calculated, so a factory function — a function that
returns a base class pointer to a newly-created derived class object —
can be used to return a pointer to a timekeeping object:

TimeKeeper* getTimeKeeper(); // returns a pointer to a dynamic-
// ally allocated object of a class
// derived from TimeKeeper

In keeping with the conventions of factory functions, the objects
returned by getTimeKeeper are on the heap, so to avoid leaking mem-
ory and other resources, it's important that each returned object be
properly deleted:

TimeKeeper *ptk = getTimeKeeper(); //get dynamically allocated object
// from TimeKeeper hierarchy

. // use it
delete ptk; // release it to avoid resource leak
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The problem is that getTimeKeeper returns a pointer to a derived class
object (e.g., AtomicClock), that object is being deleted via a base class
pointer (i.e., a TimeKeeper* pointer), and the base class (TimeKeeper)
has a non-virtual destructor. This is a recipe for disaster, because C++

Constructors, Destructors, operator= Item 7 41

specifies that when a derived class object is deleted through a pointer
to a base class with a non-virtual destructor, results are undefined.
What typically happens at runtime is that the derived part of the
object is never destroyed. If a call to getTimeKeeper happened to return
a pointer to an AtomicClock object, the AtomicClock part of the object

<



a pointer to an AtomicClock object, the AtomicClock part of the object
(i.e., the data members declared in the AtomicClock class) would prob-
ably not be destroyed, nor would the AtomicClock destructor run. How-
ever, the base class part (i.e., the TimeKeeper part) typically would be
destroyed, thus leading to a curious “partially destroyed” object. This
is an excellent way to leak resources, corrupt data structures, and
spend a lot of time with a debugger.

Eliminating the problem is simple: give the base class a virtual
destructor. Then deleting a derived class object will do exactly what
you want. It will destroy the entire object, including all its derived
class parts:

class TimeKeeper {
public:

TimeKeeper();

virtual ~TimeKeeper();

B
TimeKeeper *ptk = getTimeKeeper();

delete ptk; // now behaves correctly

6.76x9.25 in <
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from functions written in other languages unless you explicitly com-
pensate for the vptr, which is itself an implementation detail and

hence unportable.

The bottom line is that gratuitously declaring all destructors virtual is
just as wrong as never declaring them virtual. In fact, many people
summarize the situation this way: declare a virtual destructor in a
class if and only if that class contains at least one virtual function.

(Et is possible to get bitten by the non-virtual destructor problem even
in the complete absence of virtual functions. For example, the stan-
dard string type contains no virtual functions, but misguided program-
mers sometimes use it as a base class anyway:

class SpecialString: public std:string{  // bad idea! std:string has a
é]) // non-virtual destructor
}

At first glance, this may look innocuous, but if anywhere in an appli-
cation you somehow convert a pointer-to-SpecialString into a pointer-to-
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Occasionally it can be convenient to give a class a pure virtual
destructor. Recall that pure virtual functions result in abstract classes
— classes that can’'t be instantiated (i.e., you can’t create objects of
that type). Sometimes, however, you have a class that you’d like to be
abstract, but you don’t have any pure virtual functions. What to do?
Well, because an abstract class is intended to be used as a base class,
and because a base class should have a virtual destructor, and
because a pure virtual function yields an abstract class, the solution
is simple: declare a pure virtual destructor in the class you want to be
abstract. Here's an example:

class AWOV { // AWOQV = “Abstract w/o Virtuals”
public:
virtual ~AWQOV() = 0; // declare pure virtual destructor

]-.F'

This class has a pure virtual function, so it's abstract, and it has a vir-
tual destructor, so you won’t have to worry about the destructor prob-
lem. There is one twist, however: you must provide a definition for the
pure virtual destructor:

AWOV:~AWOV() {} // definition of pure virtual dtor
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The way destructors work is that the most derived class’s destructor
is called first, then the destructor of each base class is called. Compil-

44 Item 8 Chapter 2

ers will generate a call to ~AWOV from its derived classes’ destructors,
so you have to be sure to provide a body for the function. If you don't,
the linker will complain.

The rule for giving base classes virtual destructors applies only to
polymorphic base classes — to base classes designed to allow the
manipulation of derived class types through base class interfaces.
TimeKeeper is a polymorphic base class, because we expect to be able
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ers will generate a call to ~AWOV from its derived classes’ destructors,
so you have to be sure to provide a body for the function. If you don't,
the linker will complain.

The rule for giving base classes virtual destructors applies only to
polymorphic base classes — to base classes designed to allow the
manipulation of derived class types through base class interfaces.
TimeKeeper is a polymorphic base class, because we expect to be able
to manipulate AtomicClock and WaterClock objects, even if we have only
TimeKeeper pointers to them.

Not all base classes are designed to be used polymorphically. Neither
the standard string type, for example, nor the STL container types are
designed to be base classes at all, much less polymorphic ones. Some
classes are designed to be used as base classes, yet are not designed
to be used polymorphically. Such classes — examples include Uncopy-
able from Item 6 and input_iterator_tag from the standard library (see
Item 47) — are not designed to allow the manipulation of derived class
objects via base class interfaces. As a result, they don’t need virtual
destructors.

% B - i . h |
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Item 8: Prevent exceptions from leaving destructors.

C++ doesn’t prohibit destructors from emitting exceptions, but it cer-
tainly discourages the practice. With good reason. Consider:

class Widget {
public:

:Widget() {..} // assume this might emit an exception

]-.F'

void doSomething()
{

std::vector<Widget> v;

) // v is automatically destroyed here

When the vector v is destroyed, it is responsible for destroying all the
Widgets it contains. Suppose v has ten Widgets in it, and during
destruction of the first one, an exception is thrown. The other nine
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Constructors, Destructors, operator= Item 8 45

Widgets still have to be destroyed (otherwise any resources they hold
would be leaked), so v should invoke their destructors. But suppose
that during those t::alls,‘sgl second Widget destructor throws an excep-
tion. Now there are two simultaneously active exceptions, and that’s
one too many for C++. Depending on the precise conditions under
which such pairs of simultaneously active exceptions arise, program
execution either terminates or yields undefined behavior.| In this
example, it yields undefined behavior. It would yield equally undefined
behavior using any other standard library container (e.g., list, set), any
container in TR1 (see Item 54), or even an array. Not that containers
or arrays are required to get into trouble. Premature program termi-
nation or undefined behavior can result from destructors emitting
exceptions even without using containers and arrays. C++ does not
like destructors that emit exceptions!

That's easy enough to understand, but what should you do if your
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(Fl‘his is fine as long as the call to close succeeds, but if the call yields
an exception, DBConn’s destructor will propagate that exception, i.e.,

allow it to leave the destructor. That's a problem, because destructors
that throw mean trouble.

There are two primary ways to avoid the trouble. DBConn’s destructor
could:

* Terminate the program if close throws, typically by calling abort:

DBConn:~DBConn()

{
try { db.close(); }

catch (...) {

make log entry that the call to close failed,
std::abort();

}
!
This is a reasonable option if the program cannot continue to run
after an error is encountered during destruction. It has the advan-
tage that if allowing the exception to propagate from the destructor
would lead to undefined behavior, this prevents that from happen-

ing. That is, calling abort may forestall undefined behavior.
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Swallow the exception arising from the call to close:

DBConn:~DBConn()

{
try { db.close(); }

catch (...) {
make log entry that the call to close failed;

J
J

In general, swallowing exceptions is a bad idea, because it sup-
presses important information — something failed! Sometimes,
however, swallowing exceptions is preferable to running the risk of
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Cclass Ublonn {
public:

void close()
{

db.close();
closed = true;

J

~DBConn()

{
if (Iclosed) {
try {
db.close();
}
catch (...) {
make log entry that call to close failed,;

-
J
J

private:
DBConnection db;
‘ bool closed;

// new function for
// client use

// close the connection
// if the client didn't

// if closing fails,
// note that and
// terminate or swallow
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Moving the responsibility for calling close from DBConn’s destructor to
DBConn’s client (with DBConn’s destructor containing a “backup” call)
may strike you as an unscrupulous shift of burden. You might even
view it as a violation of Item 18’s advice to make interfaces easy to use
correctly. In fact, it's neither. [f an operation may fail by throwing an
exception and there may be a need to handle that exception, the
exception has to come from some non-destructor ‘)‘"u]rlu::tiorélS That's

48 Item 9 Chapter 2

because destructors that emit exceptions are dangerous, always run-
ning the risk of premature program termination or undefined behav-
ior. In this example, telling clients to call close themselves doesn’t
impose a burden on them: it gives them an opportunity to deal with
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find that opportunity useful (perhaps because they believe that no
error will really occur), they can ignore it, relying on DBConn’s destruc-
tor to call close for them. If an error occurs at that point — if close does
throw — they're in no position to complain if DBConn swallows the
exception or terminates the program. After all, they had first crack at
dealing with the problem, and they chose not to use it.

T’l‘hings to Remember

+ Destructors should never emit exceptions. If functions called in a
destructor may throw, the destructor should catch any exceptions,
then swallow them or terminate the program.

+ If class clients need to be able to react to exceptions thrown during
an operation, the class should provide a regular (i.e., non-destruc-
tor) function that performs the operation.

Item 9: Never call virtual functions during
construction or destruction.

I'll begin with the recap: you shouldn’t call virtual functions during
construction or destruction, because the calls won't do what you
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struction or destruction|. If Transaction had multiple constructors, each
of which had to perfornr some of the same work, it would be good soft-
ware engineering to avoid code replication by putting the common ini-
tialization code, including the call to logTransaction, into a private non-
virtual initialization function. say, init:

class Transaction {
public:

Transaction()
{init();} // call to non-virtual...

virtual void logTransaction() const = 0;

private:
void init()
{

logTransaction(); // ..that calls a virtual!

}
%
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base classes during construction, you can compensate by having
derived classes pass necessary construction information up to base
class constructors instead.

In this example, note the use of the (private) static function createl-
ogString in BuyTransaction. Using a helper function to create a value to
pass to a base class constructor is often more convenient (and more
readable) than going through contortions in the member initialization
list to give the base class what it needs. By making the function static,
there’s no danger of accidentally referring to the nascent BuyTransac-
tion object’s as-yet-uninitialized data members. That's important,
because the fact that those data members will be in an undefined
state is why calling virtual functions during base class construction
and destruction doesn’'t go down into derived classes in the first place.

Things to Remember

+TDon't call virtual functions during construction or destruction, be-
cause such calls will never go to a more derived class than that of
the currently executing constructor or destructorEL

T - . A M. T . . A A A
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Item 10: Have assignment operators return a
reference to *this.

One of the interesting things about assignments is that you can chain
them together:

intxy,z
(E(:y:z: 15; // chain of assignments

Also interesting is that assignment is right-associative, so the above
assignment chain is parsed like this:

x:(y:(z:15))él)

Here, 15 is assigned to z, then the result of that assignment (the
updated z) is assigned to y, then the result of that assignment (the
updated y) is assigned to x.

The way this is implemented is that assignment returns a reference to
its left-hand argument, and that's the convention you should follow
when you implement assignment operators for your classes:

class Widget {

ntihlic:
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Personally, I worry that this approach sacrifices clarity at the altar of
cleverness, but by moving the copying operation from the body of the
function to construction of the parameter, it's a fact that compilers
can sometimes generate more efficient code.

Things to Remember

+ Make sure operator= is well-behaved when an object is assigned to
itself. Techniques include comparing addresses of source and target
objects, careful statement ordering, and copy-and-swap.

+(EVIake sure that any function operating on more than one object be-
haves correctly if two or more of the objects are the same.

(])Item 12: Copy all parts of an object.

In well-designed object-oriented systems that encapsulate the internal
parts of objects, only two functions copy objects: the aptly named
copy constructor and copy assignment operator. We'll call these the

ArArTirna frimnotinane THtarm R Alhcarmirace that carmnilare virill fanarata tha
6.76x9.25 in <
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Customer::Customer(const Customer& rhs)
: name(rhs.name) // copy rhs’s data

{

logCall("Customer copy constructor");

J

Customer& Customer:operator=(const Customer& rhs)

{

logCall("Customer copy assignment operator");
name =rhs.name; // copy rhs’s data
return *this; // see ltem 10

J

(ﬁjlverything here looks fine, and in fact everything is fine — until
another data member is added to Customeﬂ;

— - I bl LA -

6.76x9.25 in <



[JUUIILJ
// as before

private:
std:string name;
Date lastTransaction;
Iy
At this point, the existing copying functions T’ﬂe performing a partial
copy: they're copying the customer’s name, but not its lastTransaction.
Yet most compilers say nothing about this, not even at maximal warn-
ing level (see also Item 53). That's their revenge for your writing the
copying functions yourself. You reject the copying functions they'd
write, so they don't tell you ir your code is incomplete. The conclusion
is obvious: if you add a data member to a class, you need to make
sure that you update the copying functions, too. (You'll also need to
update all the constructors (see Items 4 and 45) as well as any non-
standard forms of operator= in the class (Item 10 gives an example). If
you forget, compilers are unlikely to remind you.)

One of the most insidious ways this issue can arise is through inherit-
ance. Consider:

class PriorityCustomer: public Customer { // a derived class
public:

6.76x9.25 in <
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Trying things the other way around — having the copy constructor
call the copy assignment operator — is equally nonsensical. A con-
structor initializes new objects, but an assignment operator applies
only to objects that have already been initialized. Performing an
assignment on an object under construction would mean doing some-
thing to a not-yet-initialized object that makes sense only for an ini-
tialized object. Nonsense! Don't try it.

(Enstead, if you find that your copy constructor and copy assignment
operator have similar code bodies, eliminate the duplication by creat-
ing a third member function that both call. Such a function is typi-
cally private and is often named init. This strategy is a safe, proven
way to eliminate code duplication in copy constructors and copy
assignment operatorsi

Things to Remember

+ Copying functions should be sure to copy all of an object’s data
members and all of its base class parts.

+ Don’t try to implement one of the copying functions in terms of the
other. Instead, put common functionality in a third function that

<



Many resources are dynamically allocated on the heap, are used only
within a single block or function, and should be released when control
leaves that block or function. The standard library's auto_ptr is tailor-
made for this kind of situation. auto_ptr is a pointer-like object (a
smart pointer) whose destructor automatically calls delete on what it

points to. Here’s how to use auto_ptr to prevent f's potential resource
leak:

void f()
{
std::auto_ptr<investment> plnv(createlnvestment()); // call factory
// function
// use plnv as
// before
} // automatically

// delete plnv via
// auto_ptr’s dtor

This simple example demonstrates the two critical aspects of using
objects to manage resources:

* Resources are acquired and immediately turned over to re-
source-managing objects. Above, the resource returned by create-
Investment is used to initialize the auto_ptr that will manage it. In
fact, the idea of using objects to manage resources is often called
Resource Acquisition Is Initialization (RAII), because it's so common

» RPN 1 = .
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Because an auto_ptr automatically deletes what it points to when the
auto_ptr is destroyed, it's important that there never be more than one
auto_ptr pointing to an object. If there were, the object would be
deleted more than once, and that would put your program on the fast
track to undefined behavior. To prevent such problems, auto_ptrs have
an unusual characteristic: copying them (via copy constructor or copy

64 Item 13 Chapter 3

assignment operator) sets them to null, and the copying pointer
assumes sole ownership of the resource!

std::auto_ptr<investment> // plnv1 points to the
plnv1(createlnvestment()); // object returned from
// createlnvestment

std::auto_ptr<lnvestment> plnv2(plnv1); // plnv2 now points to the



An alternative to auto_ptr is a reference-counting smart pointer (RCSP).
An RCSP is a smart pointer that keeps track of how many objects
point to a particular resource and automatically deletes the resource
when nobody is pointing to it any longer. As such, RCSPs offer behav-
ior that is similar to that of garbage collection. Unlike garbage collec-
tion, however, RCSPs can't break cycles of references (e.g., two
otherwise unused objects that point to one another).

TR1’s trl:shared_ptr (see Item 54) is an RCSP, so you could write f this
way:

void f()
{

std:tr1::shared_ptr<investment>
plnv(createlnvestment()); // call factory function

// use plnv as before

} // automatically delete
// pInv via shared_ptr’s dtor

This code looks almost the same as that employing auto_ptr, but copy-
ing shared_ptrs behaves much more naturally:

void f()
{

std:trl:shared_ptr<lnvestment> // pInv1 points to the



This code looks almost the same as that employing auto_ptr, but copy-
ing shared_ptrs behaves much more naturally:

void f()
{
std::tr1:shared ptr<investment> // plnv1 points to the
plnv1(createlnvestment()); // object returned from
// createlnvestment
Resource Management Item 13 65
std:tr1:shared_ptr<lnvestment> // both pInv1 and plnv2 now
plnv2(plnv1); // point to the object
plnv1 = plnv2; // ditto — nothing has

// changed
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std:tr1:shared_ptr<Investment> // both plnv1 and plnv2 now
plnv2(plnv1); // point to the object
plnv1 = plnv2; // ditto — nothing has
// changed
} // plnv1 and plnv2 are

/ destroyed, and the
/ object they point to is
// automatically delete

Because copying tr1:shared_ptrs works “as expected,” they can be used
in STL containers and other contexts where auto_ptr's unorthodox
copying behavior is inappropriate.

Don’t be misled, though. This Item isn’'t about auto_ptr. trl:shared_ptr,
or any other kind of smart pointer. It's about the importance of using
objects to manage resources. auto_ptr and trl:shared_ptr are just
examples of objects that do that. (For more information on
tri:shared_ptr, consult Items 14, 18, and 54.)

Both auto_ptr and trl1:shared_ptr use delete in their destructors, not
delete []. (Item 16 describes the difference.) That means that using
auto_ptr or trl:shared_ptr with dynamically allocated arrays is a bad
idea, though, regrettably, one that will compile:



\ﬁ30th auto_ptr and tr1:shared_ptr use delete in their destructors, not
delete[]. (Item 16 describes the difference.) That means that using
auto_ptr or trlzshared_ptr with dynamically allocated arrays is a bad
idea, though, regrettably, one that will compile:

std::auto_ptr<std::string> // bad idea! the wrong
aps(new std::string[10]); // delete form will be used

stdztr1:shared_ptr<int> spi(new int[1024]);  // same problem

You may be surprised to discover that there is nothing like auto_ptr or
trl:shared_ptr for dynamically allocated arrays in C++, not even in
TR1. That's because vector and string can almost always replace
dynamically allocated arrays. If you still think it would be nice to have
auto_ptr- and trl:shared_ptr-irke classes for arrays. look to Boost (see
Item 55). There you’ll be pleased to find the boost::scoped_array and
boost::shared_array classes that offer the behavior you're looking for.

This Item’s guidance to use objects to manage resources suggests that
if you're releasing resources manually (e.g., using delete other than in
a resource-managing class), youre doing something wrong. Pre-
canned resource-managing classes like auto_ptr and trl:shared_ptr
often make following this Item’s advice easy, but sometimes you're
using a resource where these pre-fab classes don't do what you need.
When that's the case, you'll need to craft your own resource-managing
classes. That's not terribly difficult to do, but it does involve some
subtleties you'll need to consider. Those considerations are the topic
of Items 14 and 15.
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As a final comment, I have to point out that createlnvestment’'s raw
pointer return type is an invitation to a resource leak, because it's so
easy for callers to forget to call delete on the pointer they get back.
(Even if they use an auto_ptr or trl:shared_ptr to perform the delete,
they still have to remember to store createlnvestment’s return value in
a smart pointer object.) Combatting that problem calls for an interface
modification to createlnvestment, a topic I address in [tem 18.

Things to Remember

+ To prevent resource leaks, use RAII objects that acquire resources
in their constructors and release them in their destructors.

+%‘wo commonly useful RAII classes are trl:shared_ptr and auto_ptr.
tr1::shared_ptr is usually the better choice, because its behavior when
copied is intuitive. Copying an auto_ptr sets it to nu]lé

Item 14: Think carefully about copying behavior in

resource-managing classes.

I[tem 13 introduces the idea of Resource Acquisition Is Initialization
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Fortunately, trl:shared_ptr allows specification of a “deleter” — a
function or function object to be called when the reference count
goes to zero. (This functionality does not exist for auto_ptr, which
always deletes its pointer.) The deleter is an optional second pa-

rameter to the trl:shared_ptr constructor, so the code would look
like this:

class Lock {
public:
explicit Lock(Mutex *pm) // init shared_ptr with the Mutex
: mutexPtr(pm, unlock) // to point to and the unlock func
{ // as the deleter”
lock(mutexPtr.get()); // see Item 15 for info on “get”
}
private:
std::tr1:shared_ptr<Mutex> mutexPtr; // use shared_ptr
|5 // instead of raw pointer

In this example, notice how the Lock class no longer declares a de-
structor. That's because there’'s no need to. Item 5 explains that a
class’s destructor (regardless of whether it is compiler-generated
or user-defined) automatically invokes the destructors of the
class’s non-static data members. In this example, that's mutexPtr.
But mutexPtr's destructor will automatically call the tr1:shared_ptr's
deleter — unlock, in this case — when the mutex’s reference count
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This rule is also noteworthy for the typedef-inclined, because it means
that a typedef’s author must document which form of delete should be
employed when new is used to conjure up objects of the typedef type.
For example. consider this typedef:

typedef std::string AddressLines[4];  // a person’s address has 4 lines,
// each of which is a string

Because AddressLines is an array. this use of new,

std::string *pal = new AddressLines;  // note that “new AddressLines”
// returns a string*, just like
// “new string[4]” would

must be matched with the array form of delete:

delete pal; // undefined!
delete [] pal; // fine

To avoid such confusion, abstain from typedefs for array types. That's
easy, because the standard C++ library (see Item 54) includes string
and vector, and those templates reduce the need for dynamically allo-
cated arrays to nearly zero. Here, for example, AddressLines could be
defined to be a vector of strings, i.e., the type vector<string>.
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processWidget(std::tr1:shared_ptr<Widget>(new Widget), priority());

Surprisingly, although we're using object-managing resources every-
where here, this call may leak resources. It's illuminating to see how.

Before compilers can generate a call to processWidget, they have to
evaluate the arguments being passed as its parameters. The second
argument is just a call to the function priority, but the first argument,
(*std:tr1:shared_ptr<Widget>(new Widget)”) consists of two parts:

= Execution of the expression “new Widget”.
= A call to the tr1:shared_ptr constructor.

Before processWidget can be called, then, compilers must generate
code to do these three things:

= Call priority.
= Execute “new Widget”.
= Call the trl1:shared_ptr constructor.

C++ compilers are granted considerable latitude in determining the
order in which these things are to be done. (This is different from the
way languages like Java and C# work, where function parameters are
always evaluated in a particular order.) The “new Widget” expression
must be executed before the trl:shared_ptr constructor can be called,

because the result of the expression is passed as an argument to the
fr1-charad mtr rorcectr-1ietonr Bi11t the call ta Briaritvy catm bhe moerforraad



way languages like Java and C# work, where function parameters are
always evaluated in a particular order.) The “new Widget” expression
must be executed before the trl:shared_ptr constructor can be called,
because the result of the expression is passed as an argument to the
tr1:shared_ptr constructor, but the call to priority can be performed
first, second, or third. If compilers choose to perform it second (some-
thing that may allow them to generate more efficient code), we end up
with this sequence of operations:

1. Execute "new Widget”.
2. Call priority.
3. Call the tr1:shared_ptr constructor.

But consider what will happen if the call to priority yields an exception.
In that case, the pointer returned from “new Widget” will be lost.
because it won't have been stored in the tr1:shared_ptr we were expect-
ing would guard against resource leaks. A leak in the call to process-
Widget can arise because an exception can intervene between the time
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because it won't have been stored in the tr1:shared_ptr we were expect-
ing would guard against resource leaks. A leak in the call to process-
Widget can arise because an exception can intervene between the time
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a resource is created (via “new Widget”) and the time that resource is
turned over to a resource-managing object.

The way to avoid problems like this is simple: use a separate state-
ment to create the Widget and store it in a smart pointer, then pass
the smart pointer to processWidget:

std:tri:shared_ptr<Widget> pw(new Widget);  // store newed object
// in a smart pointerin a
// standalone statement

processWidget(pw, priority()); // this call won't leak



Things to Remember

+ Store newed objects in smart pointers in standalone statements.
Failure to do this can lead to subtle resource leaks when exceptions
are thrown.
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Suppose we have a public data member, and we eliminate it. How
much code might be broken? All the client code that uses it, which is
generally an unknowably large amount. Public data members are thus
completely unencapsulated. But suppose we have a protected data
member, and we eliminate it. How much code might be broken now?
All the derived classes that use it, which is, again, typically an
unknowably large amount of code. Protected data members are thus
as unencapsulated as public ones, because in both cases, if the data
members are changed, an unknowably large amount of client code is
broken. This is unintuitive, but as experienced library implementers
will tell you, it's still true. Once you've declared a data member public
or protected and clients have started using it, it's very hard to change
anything about that data member. Too much code has to be rewritten,

o8 Item 23 Chapter 4
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class Rational {

// contains no operator#*

|5

const Rational operator#(const Rational& |hs, // now a non-member
const Rational& rhs) // function
{

return Rational(lhs.numerator() * rhs.numerator(),
lhs.denominator() * rhs.denominator());
}

Rational oneFourth(1, 4):
Rational result;

result = oneFourth = 2; // fine
result = 2 * oneFourth; // hooray, it works!

This is certainly a happy ending to the tale, but there is a nagging
worry. Should operator* be made a friend of the Rational class?

In this case, the answer is no, because operator* can be implemented
entirely in terms of Rational’s public interface. The code above shows
one way to do it. That leads to an important observation: the opposite
of a member function is a non-member function, not a friend function.
Too many C++ programmers assume that if a function is related to a
class and should not be a member (due, for example, to a need for
type conversions on all arguments), it should be a friend. This exam-
ple demonstrates that such reasoning is flawed. Whenever you can
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This Item contains the truth and nothing but the truth, but it’'s not
the whole truth. When you cross the line from Object-Oriented C++
into Template C++ (see Item 1) and make Rational a class template
instead of a class, there are new issues to consider, new ways to
resolve them, and some surprising design implications. Such issues,
resolutions, and implications are the topic of Item 46.

Things to Remember

+ If you need type conversions on all parameters to a function (includ-
ing the one that would otherwise be pointed to by the this pointer),
the function must be a non-member.
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However, the default swap implementation may not thrill you. It
involves copying three objects: a to temp, b to a, and temp to b. For
some types, none of these copies are really necessary. For such types,
the default swap puts you on the fast track to the slow lane.

Foremost among such types are those consisting primarily of a
pointer to another type that contains the real data. A common mani-
festation of this design approach is the “pimpl idiom” (“pointer to
implementation” — see Item 31). A Widget class employing such a
design might look like this:

class Widgetimpl { // class for Widget data;
public: // details are unimportant
private:

inta, b, c; // possibly lots of data —

std::vector<double> v; // expensive to copy!

<
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class Widget { // class using the pimpl idiom
public:

Widget(const Widget& rhs);

Widget& operator=(const Widget& rhs)  //to copy a Widget, copy its
{ // Widgetimpl object. For
// details on implementing
*plmpl = *(rhs.pImpl); // operator=in general,
// see ltems 10, 11, and 12.
}

private:

Widgetlimpl *pImpl; // ptr to object with this
1 // Widget'’s data
To swap the value of two Widget objects, all we really need to do is
swap their plmpl pointers, but the default swap algorithm has no way
to know that. Instead, it would copy not only three Widgets, but also
three Widgetimpl objects. Very inefficient. Not a thrill.

<
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What we'd like to do is tell std:i:swap that when Widgets are being
swapped, the way to perform the swap is to swap their internal plmpl
pointers. There is a way to say exactly that: specialize std::swap for
Widget. Here's the basic idea, though it won’t compile in this form:

namespace std {

template<> // this is a specialized version
void swap<Widget>(Widget& a, // of std::swap for when T is

Widget& b) // Widget
{
swap(a.plmpl, b.plmpl); // to swap Widgets, swap their
} // plmpl pointers; this won't
compile

}

The “template<>" at the beginning of this function says that this is a
total template specialization for std::swap, and the “<Widget>" after the
name of the function says that the specialization is for when T is Wid-
get. In other words, when the general swap template is applied to Wid-
gets, this is the implementation that should be used. In general, we're
not permitted to alter the contents of the std namespace, but we are
allowed to totally specialize standard templates (like swap) for types of
our own creation (such as Widget). That's what we're doing here.



our own creation (such as Wid get). That's what we're doiﬁg here.

As I said, though, this function won’t compile. That's because it's try-
ing to access the plmpl pointers inside a and b, and they're private. We
could declare our specialization a friend, but the convention is differ-
ent: it’s to have Widget declare a public member function called swap

108 Item 25 Chapter 4

that does the actual swapping, then specialize std:swap to call the
member function:

- —_ wArr_l . _sr e P S T S
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member function:

class Widget {
public:

;}.oid swap(Widget& other)
{

using std::swap;

swap(plmpl, other.plmpl);
}

L

namespace std {

template<>

void swap<Widget>(Widget& a,
Widget& b)

{

a.swap(b);
}

<

W R W A AR
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// same as above, except for the
// addition of the swap mem func

// the need for this declaration
// is explained later in this ltem

// to swap Widgets, swap their
// plmpl pointers

// revised specialization of

// std:swap

// to swap Widgets, call their
// swap member function



rule, these two swap characteristics go hand in hand, because highly
efficient swaps are almost always based on operations on built-in
types (such as the pointers underlying the pimpl idiom), and opera-
tions on built-in types never throw exceptions.

T’l‘hings to Remember

+ Provide a swap member function when std::swap would be inefficient
for your type. Make sure your swap doesn’t throw exceptions.

+ If you offer a member swap, also offer a non-member swap that calls
the member. For classes (not templates), specialize std:swap, too.

+ When calling swap, employ a using declaration for std::swap, then call
swap without namespace qualification.

+ It’s fine to totally specialize std templates for user-defined types, but
never try to add something completely new to SthS

6.76x9.25 in <
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// this function defines the variable "encrypted" too soon
std:string encryptPassword(const std::string& password)

{

using namespace std;
string encrypted,;

if (password.length() < MinimumPasswordLength) {
throw logic_error("Password is too short");
}

// do whatever is necessary to place an
// encrypted version of password in encrypted

return encrypted,;

J

The object encrypted isn’t completely unused in this function, but it's
unused if an exception is thrown. That is, you'll pay for the construc-
tion and destruction of encrypted even if encryptPassword throws an
exception. As a result, you're better off postponing encrypted’s defini-
tion until you know you’ll need it:

* ~ Ll Ir (] ~ - Ll
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// TNIS TUNCTION postpones encrypteds aderinition until ITs truly necessary
std:string encryptPassword(const std::string& password)

{

using namespace std;

if (password.length() < MinimumPasswordlLength) {
throw logic_error("Password is too short");

J
string encrypted;

// do whatever is necessary to place an
// encrypted version of password in encrypted

return encrypted;

J

This code still isn't as tight as it might be, because encrypted is defined
without any initialization arguments. That means its default con-
structor will be used. In many cases, the first thing you'll do to an
object is give it some value, often via an assignment. Item 4 explains
why default-constructing an object and then assigning to it is less effi-
cient than initializing it with the value you really want it to have. That
analysis applies here, too. For example, suppose the hard part of
encryptPassword is performed in this function:

<
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“But what about loops?” you may wonder. If a variable is used only
inside a loop, is it better to define it outside the loop and make an
assignment to it on each loop iteration, or is it be better to define the

variable inside the loop? That is, which of these general structures is
better?

// Approach A: define outside loop // Approach B: define inside loop

Widget w;
for(inti=0;i<n;++i){ for(inti=0:i<n; ++i){
W = some value dependent on i Widget w(some value dependent on

;
} }

<



6.76x9.25 in

Here ['ve switched from an object of type string to an object of type Wid-
get to avoid any preconceptions about the cost of performing a con-
struction, destruction, or assignment for the object.

In terms of Widget operations, the costs of these two approaches are
as follows:

" Approach A: 1 constructor + 1 destructor + n assignments.
" Approach B: n constructors + n destructors.

For classes where an assignment costs less than a constructor-
destructor pair, Approach A is generally more efficient. This is espe-
cially the case as n gets large. Otherwise, Approach B is probably bet-
ter. Furthermore, Approach A makes the name w visible in a larger
scope (the one containing the loop) than Approach B. something that's
contrary to program comprehensibility and maintainability. As a
result, unless you know that (1) assignment is less expensive than a
constructor-destructor pair and (2) youre dealing with a perfor-
mance-sensitive part of your code, you should default to using
Approach B.

<
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const_cast is typically used to cast away the constness of objects. It
is the only C++-style cast that can do this.

dynamic_cast is primarily used to perform “safe downcasting.” i.e.,
to determine whether an object is of a particular type in an inher-
itance hierarchy. It is the only cast that cannot be performed us-
ing the old-style syntax. It is also the only cast that may have a
significant runtime cost. (I'll provide details on this a bit later.)

reinterpret_cast is intended for low-level casts that yield implemen-
tation-dependent (i.e., unportable) results, e.g., casting a pointer
to an int. Such casts should be rare outside low-level code. I use it
only once in this book, and that's only when discussing how you
might write a debugging allocator for raw memory (see [tem 50).

static_cast can be used to force implicit conversions (e.g., non-const
object to const object (as in Item 3), int to double, etc.). It can also be
used to perform the reverse of many such conversions (e.g., void*
pointers to typed pointers, pointer-to-base to pointer-to-derived),
though it cannot cast from const to non-const objects. (Only
const_cast can do that.)
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class Base{..}:

class Derived: public Base { ... };

Derived d:

Base *pb = &d; // implicitly convert Derived* = Base*

Here we're just creating a base class pointer to a derived class object,
but sometimes, the two pointer values will not be the same. When
that’s the case, an offset is applied at runtime to the Derived* pointer to
get the correct Base* pointer value.

This last example demonstrates that a single object (e.g., an object of
type Derived) might have more than one address (e.g., its address
when pointed to by a Base* pointer and its address when pointed to by
a Derived* pointer). That can’t happen in C. It can’t happen in Java. It
can't happen in C#. It does happen in C++. In fact, when multiple

6.76x9.25 in <
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Good C++ uses very few casts, but it's generally not practical to get rid
of all of them. The cast from int to double on page 118, for example, is
a reasonable use of a cast, though it's not strictly necessary. (The code
could be rewritten to declare a new variable of type double that’s ini-
tialized with x’s Value.;‘tﬁ;ike most suspicious constructs, casts should
be isolated as much as possible, typically hidden inside functions
whose interfaces shield callers from the grubby work being done
inside.

Things to Remember

+ Avoid casts whenever practical, especially dynamic_casts in perfor-
mance-sensitive code. If a design requires casting, try to develop a
cast-free alternative.

+ When casting is necessary, try to hide it inside a function. Clients
can then call the function instead of putting casts in their own code.

+ Prefer C++-style casts to old-style casts. They are easier to see, and
they are more specific about what they do (L

<



ber. But rec is supposed to be const! .

Everything we've done has involved member functions returning refer-
ences, but if they returned pointers or iterators, the same problems
would exist for the same reasons. References, pointers, and iterators v
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We generally think of an object’s “internals” as its data members, but
member functions not accessible to the general public (i.e., that are
protected or private) are part of an object’s internals, too. As such, it’s
important not to return handles to them. This means you should
never have a member function return a pointer to a less accessible
member function. If you do, the effective access level will be that of the
more accessible function, because clients will be able to get a pointer
to the less accessible function, then call that function through the
pointer.

Functions that return pointers to member functions are uncommon,
however, so let’s turn our attention back to the Rectangle class and its
upperLeft and lowerRight member functions. Both of the problems
we've identified for those functions can be eliminated by simply apply-
ing const to their return types:

class Rectangle {
public:

const Point& upperLeft() const { return pData->ulhc; }
const Point& lowerRight() const { return pData->Irhc; }
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allows you 1o pluckK mdividual elements out oI strings and vectors, and
these operator[]s work by returning references to the data in the con-
tainers (see Item 3) — data that is destroyed when the containers
themselves are. Still, such functions are the exception, not the rule.

Things to Remember

+(]?ﬂwoid returning handles (references, pointers, or iterators) to object
internals. Not returning handles increases encapsulation, helps
const member functions act const, and minimizes the creation of

dangling handle%

Implementations Item 29 127

Item 29: Strive for exception-safe code.

Exception safetv is sort of like nregnancv...but hold that thought for a

<



On the other hand, if an inline function body is very short, the code
generated for the function body may be smaller than the code gener-
ated for a function call. If that is the case, inlining the function may
actually lead to smaller object code and a higher instruction cache hit
rate!

%ear in mind that inline is a request to compilers, not a command. The
request can be given implicitly or explicitly. The implicit way is to
define a function inside a class definition:

class Person {
public:

|nt age() const { return theAge; } // an implicit inline request: age is
// defined in a class definitiorf

private:
int theAge;

}!

Such functions are usually member functions, but Item 46 explains
that friend functions can also be defined inside classes. When they

are, they're also implicitly declared inline.

Tha avnlinit yitntyr +n Aanlara an inline Hiinatian iec +ta nremnada ite Aafini_
6.76x9.25in <



private:
int theAge;

Iy
Such functions are usually member functions, but Item 46 explains

that friend functions can also be defined inside classes. When they
are, they're also implicitly declared inline.

TThe explicit way to declare an inline function is to precede its defini-
tion with the inline keyword. For example, this is how the standard
max template (from <algorithm>) is often implemented:

template<typename T> // an explicitinline
inline const T& std::max(const T& a, const T& b) // request: std::max is
{returna<b?b:a;} // preceded by “inline”

The fact that max is a template brings up the observation that both
inline functions and templates are typically defined in header files.
This leads some programmers to conclude that function templates
must be inline. This conclusion is both invalid and potentially harm-
fUIELSO it’s worth looking into it a bit.

[nline functions must typically be in header files, because most build
environments do inlining during compilation. In order to replace a

6.76x9.25 in <
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Templates are typically in header files, because compilers need to
know what a template looks like in order to instantiate it when it's
used. (Again, this is not universal. Some build environments perform
template instantiation during linking. However, compile-time instanti-
ation is more commeon.)

(Fl‘emplate instantiation is independent of inlining. If you're writing a
template and you believe that all the functions instantiated from the
template should be inlined, declare the template inline; that’s what'’s
done with the std:imax implementation above. But if you're writing a
template for functions that you have no reason to want inlined, avoid
declaring the template inline (either explicitly or implicitly). Inlining
has costs, and you don't want to incur them without forethoughtl)
We've already mentioned how inlining can cause code bloat (a particu-
larly important consideration for template authors — see Item 44), but
there are other costs, too, which we’ll discuss in a moment.

Before we do that, let’s finish the observation that inline is a request
that compilers may ignore. Most compilers refuse to inline functions
they deem too complicated (e.g., those that contain loops or are recur-
sive), and all but the most trivial calls to virtual functions defy inlin-
ing. This latter observation shouldn’t be a surprise. virtual means “wait
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private:
std::string dm1, dm2, dm3; // derived members 1-3

].."

This constructor looks like an excellent candidate for inlining, since it
contains no code. But looks can be deceiving.

C++ makes various guarantees about things that happen when
objects are created and destroyed. When you use new, for example,
your dynamically created objects are automatically initialized by their
constructors, and when you use delete, the corresponding destructors
are invoked. When you create an object, each base class of and each
data member in that object is automatically constructed, and the
reverse process regayding destruction automatically occurs when an
object is destroyed. [f an exception is thrown during construction of
an object, any parts of the object that have already been fully con-
structed are automatically destroyed. In all these scenarios, C++ says
what must happen, but it doesn’t say how. That's up to compiler
implementers, but it should be clear that those things don't happen
by themselves. There has to be some code in your program to make
those things happen, and that code — the code written by compilers
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Derived::Derived()

{

Base::Base();

try { dm1.std:string::string(); }
catch (...) {

Base::~Base();

throw;

J

try { dm2.std::string::string(); }
catch(...) {
dm1.std::string::~string();
Base::~Base();
throw;

J

try { dm3.std::string::string(); }
catch(...) {
dm2.std::string:~string();
dm1.std:string:~string();
Base::~Base();
throw;

// conceptual implementation of
// “empty” Derived ctor

// initialize Base part

// try to construct dm1

// if it throws,

// destroy base class part and
// propagate the exception

// try to construct dm?2

// if it throws,

// destroy dmf,

// destroy base class part, and
// propagate the exception

// construct dm3

// if it throws,

// destroy dmz2,

// destroy dm1,

// destroy base class part, and
// propagate the exception
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throw; // propaéate the excéptién
}
}

This code is unrepresentative of what real compilers emit, because
real compilers deal with exceptions in more sophisticated ways. Still,
this accurately reflects the behavior that Derived’s “empty” constructor
must offer. No matter how sophisticated a compiler’'s exception imple-
mentation, Derived’s constructor must at least call constructors for its
data members and base class, and those calls (which might them-
selves be inlined) could affect its attractiveness for inlining.

The same reasoning applies to the Base constructor, so if it's inlined,
all the code inserted into it is also inserted into the Derived construc-
tor (via the Derived constructor’s call to the Base constructor). And if
the string constructor also happens to be inlined, the Derived construc-
tor will gain five copies of that function’s code, one for each of the five
strings in a Derived object (the two it inherits plus the three it declares
itself). Perhaps now it’s clear why it’s not a no-brain decision whether
to inline Derived’s constructor. Similar considerations apply to
Derived’s destructor, which, one way or another, must see to it that all
the objects initialized by Derived’s constructor are properly destroyed.
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compiler knows how big an int is. %Vhen compilers see the definition
for p, they know they have to allocate enough space for a Person, but
how are they supposed to know how big a Person object is? The only
way they can get that information is to consult the class definition,
but if it were legal for a class definition to omit the implementation
details, how would compilers know how much space to allocate?

This question fails to arise in languages like Smalltalk and Java,
because, when an object is defined in such languages, compilers allo-
cate only enough space for a pointer to an object. That is, they handle
the code above as if it had been written like this:

int main()
{
int x; // define an int
Person *p; // define a pointer to a Person

L

This, of course, is legal C++, so you can play the “hide the object
implementation behind a pointer” game yourself. One way to do that
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Interface classes are akin to Java’'s and .NET's Interfaces, but C++
doesn’t impose the restrictions on Interface classes that Java and
NET impose on Interfacesﬁ\leither Java nor .NET allow data members
or function implementations in Interfaces, for example, but C++ for-
bids neither of these things. C++'s greater flexibility can be useful. As
[tem 36 explains, the implementation of non-virtual functions should
be the same for all classes in a hierarchy, so it makes sense to imple-
ment such functions as part of the Interface class that declares themi

An Interface class for Person could look like this:

class Person {
public:
virtual ~Person();

virtual std::string name() const =0;
virtual std::string birthDate() const = 0;
virtual std::string address() const = 0;

6.76x9.25 in <
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public:
virtual void mf1() = 0;
virtual void mf1(int);

virtual void mf2();

void mf3();
void mf3(double);

b

class Derived: public Base {
public:

virtual void mf1();

void mf3();

void mf4();

b

This code leads to behavior that surprises every C++ programmer the
first time they encounter it. The scope-based name hiding rule hasn’t
changed, so all functions named mfl and mf3 in the base class are
hidden by the functions named mf1 and mf3 in the derived class. From
the perspective of name lookup, Base:mfl and Base:mf3 are no longer

inherited by Derived!

LDdot 5 SCOUpPC

X (data member)
mf1 (2 functions)
mf2 (1 function)

mf3 (2 functions)

Derived’s scope

mf1 (1 function)
mf3 (1 function)
mf4 (1 function)




Derived d;

int x;

d.mf1(); // fine, calls Derived::mf1

d.mf1(x); // error! Derived:mf1 hides Base:mf1
Inheritance and Object-Oriented Design Item 33 159

d.mf2(); // fine, calls Base:mf2

d.mf3(); // fine, calls Derived::mf3

d.mf3(x); // error! Derived::mf3 hides Base:mf3

I
6.76x9.25 in <
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As you can see, this applies even though the functions in the base and
derived classes take different parameter types, and it also applies
regardless of whether the functions are virtual or non-virtual. In the
same way that, at the beginning of this Item, the double x in the func-
tion someFunc hides the int x at global scope, here the function mf3 in
Derived hides a Base function named mf3 that has a ditfferent type.

The rationale behind this behavior is that it prevents you from acci-
dentally inheriting overloads from distant base classes when you cre-
ate a new derived class in a library or application framework.
Unfortunately, you typically want to inherit the overloads. In fact, if
youre using public inheritance and you don’'t inherit the overloads,
you're violating the is-a relationship between base and derived classes
that Item 32 explains is fundamental to public inheritance. That being
the case, you'll almost always want to override C++'s default hiding of
inherited names.

You do it with wusing declarations:

class Base { .
private: Base’s scope

6.76x9.25 in <



You do it with wsing declarations:

class Base { .

private: Base’s scope
int x; x (data member)

public: mf1 (2 functions)
virtual void mf1() =0; mf2 (1 function)
virtual void mf1(int); mf3 (2 functions)

virtual void mf2(); Derived's scope
Eg}g mg%ouble)' mfT (2 functions)
’ mf3 (2 functions)
} mf4 (1 function)
class Derived: public Base {
public:
using Base:mf1; // make all things in Base named mf1 and mf3
using Base:mf3; // visible (and public) in Derived’s scope

virtual void mf1();
void mf3();
void mf4();

6.76x9.25 in <



160 Item 33 Chapter 6

Derived d:

int x;

d.mf1(); // still fine, still calls Derived::mf1
d.mf1(x); // now okay, calls Base::mf1

d.mf2(); // still fine, still calls Base:mf2

d.mf3(); // fine, calls Derived::mf3

d.mf3(x); // now okay, calls Base:mf3 (The int x is

// implicitly converted to a double so that
// the call to Base:mf3 is valid.)

This means that if you inherit from a base class with overloaded func-
tions and you want to redefine or override only some of them, you need
to include a using declaration for each name you'd otherwise be hiding.
If you don’t, some of the names you'd like to inherit will be hidden.

6.76x9.25 in <



[t's conceivable that you sometimes won't want to inherit all the func-
tions from your base classes. Under public inheritance, this should
never be the case, because, again, it violates public inheritance’s is-a
relationship between base and derived classes. (That's why the using
declarations above are in the public part of the derived class: names
that are public in a base class should also be public in a publicly
derived class.) Under private inheritance (see Item 39), however, it can
make sense. For example, suppose Derived privately inherits from
Base, and the only version of mfl that Derived wants to inherit is the
one taking no parameters. A using declaration won’t do the trick here,
because a using declaration makes all inherited functions with a given
name visible in the derived class. No, this is a case for a different tech-
nique, namely, a simple forwarding function:

class Base {

public:
virtual void mf1() = 0;
virtual void mf1(int);

// as before

6.76x9.25 in <
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compilers that (incorrectly) don’t support using declarations to import
inherited names into the scope of a derived class.

That’s the whole story on inheritance and name hiding, but when
inheritance is combined with templates, an entirely different form of
the “inherited names are hidden” issue arises. For all the angle-
bracket-demarcated details, see Item 43.

T’l‘hings to Remember

+ Names in derived classes hide names in base classes. Under public
inheritance, this is never desirable.

+ To make hidden names visible again, employ using declarations or
forwarding functionsé

Item 34: Differentiate between inheritance of
interface and inheritance of implementation.

The seemingly straightforward notion of (public) inheritance turns
out, upon closer examination, to be composed of two separable parts:

LA L
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nition of the fact that different models of plane could, in principle,
require different implementations for fly, Airplane:fly is declared vir-
tual. However, in order to avoid writing identical code in the ModelA
and ModelB classes, the default flying behavior is provided as the body
of Airplane:fly, which both ModelA and ModelB inheritﬂ)

This is a classic object-oriented design. Two classes share a common
feature (the way they implement fly), so the common feature is moved
into a base class, and the feature is inherited by the two classes. This
design makes common features explicit, avoids code duplication, facil-
itates future enhancements, and eases long-term maintenance — all
the things for which object-oriented technology is so highly touted.
XYZ Airlines should be proud.

Now suppose that XYZ, its fortunes on the rise, decides to acquire a
new type of airplane, the Model C. The Model C differs in some ways
from the Model A and the Model B. In particular, it is flown ditferently.

XYZ's programmers add the class for Model C to the hierarchy, but in
their haste to get the new model into service, they forget to redefine
the fly function:

1 LA 1 1~ I 1= A 1
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Now suppose that XYZ, its fortunes on the rise, decides to acquire a
new type of airplane, the Model C. The Model C differs in some ways
from the Model A and the Model B. In particular, it is flown differently.

XYZ's programmers add the class for Model C to the hierarchy, but in
their haste to get the new model into service, they forget to redefine
the fly function:

class ModelC: public Airplane {
// no fly function is declared

b

In their code, then, they have something akin to the following:

Airport PDX(...); // PDXis the airport near my home
Airplane *pa = new ModelC;

pa->fly(PDX); // calls Airplane::fly!

<



This is a disaster: an attempt is being made to fly a ModelC object as if
it were a ModelA or a ModelB. That’s not the kind of behavior that
inspires confidence in the traveling public.

The problem here is not that Airplane:fly has default behavior, but that
ModelC was allowed to inherit that behavior without explicitly saying
that it wanted to. Fortunately, it's easy to offer default behavior to
derived classes but not give it to them unless they ask for it. The trick
is to sever the connection between the interface of the virtual function
and its default implementation. Here’s one way to do it:

class Airplane {
public:
virtual void fly(const Airport& destination) = 0;

protected:
void defaultFly(const Airport& destination);

5
void Airplane:defaultFly(const Airport& destination)
{

default code for flying an airplane to the given destination

J
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Notice how Airplane:fly has been turned into a pure virtual function.
That provides the interface for flying. The default implementation is
also present in the Airplane class, but now it's in the form of an inde-
pendent function, defaultFly. Classes like ModelA and ModelB that want
to use the default behavior simply make an inline call to defaultFly
inside their body of fly (but see Item 30 for information on the interac-
tion of inlining and virtual functions):

class ModelA: public Airplane {

public:
virtual void fly(const Airport& destination)
{ defaultFly(destination); }

L

class ModelB: public Airplane {

public:
virtual void fly(const Airport& destination)
{ defaultFly(destination); }

6.76x9.25 in <
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For the ModelC class, there is no possibility of accidentally inheriting
the incorrect implementation of fly, because the pure virtual in Air-
plane forces ModelC to provide its own version of fly.

class ModelC: public Airplane {
public:
virtual void fly(const Airport& destination);

|3

void ModelC::fly(const Airport& destination)

{
code for flying a ModelC airplane to the given destination

J

6.76x9.25 in <
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MGH a member function is non-virtual, it’'s not supposed to behave
differently in derived classes. In fact, a non-virtual member function
specifies an invariant over specialization, because it identifies behavior
that is not supposed to change, no matter how specialized a derived
class becomes. As such,

" The purpose of declaring a non-virtual function is to have derived
classes inherit a function interface as well as a mandatory imple-
mentationﬂ)

You can think of the declaration for Shape:objectlD as saying, “Every
Shape object has a function that yields an object identifier, and that
object identifier is always computed the same way. That way is deter-
mined by the definition of Shape:objectlD, and no derived class should
try to change how it’s done.” Because a non-virtual function identifies
an invariant over specialization, it should never be redefined in a
derived class, a point that is discussed in detail in Item 36.

The differences in declarations for pure virtual, simple virtual, and
non-virtual functions allow you to specily with precision what you
want derived classes to inherit: interface only, interface and a default
implementation, or interface and a mandatory implementation, respec-

tivaelir Reralice thece different timec nf Aeclaratinne mean fiimmdamen_
€
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We'll begin with an interesting school of thought that argues that vir-
tual functions should almost always be private. Adherents to this
school would suggest that a better design would retain healthValue as
a public member function but make it non-virtual and have it call a
private virtual function to do the real work, say, doHealthValue:

class GameCharacter {
public:
int healthValue() const

{

int retVal = doHealthValue();

return retVal;

}

private:
virtual int doHealthValue() const

{

}..
5

// derived classes do notredefine
// this — see [tem 36

// do “"before” stuff — see below
// do the real work

// do “after” stuff — see below

// derived classes may redefine this

// default algorithm for calculating
// character’s health
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independent of inlining decisions, so don’t think it's meaningful that
the member functions are defined inside classes. It's not.

(Fl‘his basic design — having clients call private virtual functions indi-
rectly through public non-virtual member functions — is known as
the non-virtual interface (NVI) idiom. It's a particular manifestation of
the more general design pattern called Template Method (a pattern
that, unfortunately, has nothing to do with C++ templates). I call the
non-virtual function (e.g., healthValue) the virtual function’s wrapperEL

Inheritance and Object-Oriented Design Item 35 171
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Virtual functions, on the other hand, are dynamically bound (again,
see Item 37), so they don't suffer from this problem. If mf were a vir-
tual function, a call to mf through either pB or pD would result in an
invocation of D::mf, because what pB and pD really point to is an object
of type D.

Tlf you are writing class D and you redefine a non-virtual function mf
that you inherit from class B, D objects will likely exhibit inconsistent
behavior. In particular, any given D object may act like either a B or a
D when mf is called, and the determining factor will have nothing to do
with the object itself, but with the declared type of the pointer that
points to it. References exhibit the same baffling behavior as do point-

eI'SEL

But that’s just a pragmatic argument. What you really want, I know,
is some kind of theoretical justification for not redefining inherited
non-virtual functions. I am pleased to oblige.

[tem 32 explains that public inheritance means is-a, and Item 34
describes why declaring a non-virtual function in a class establishes
an invariant over specialization for that class. If you apply these
observations to the classes B and D and to the non-virtual member

”~
<
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class’s destructor. This would be true even for derived classes that
declare no destructor, because, as Item 5 explains, the destructor is
one of the member functions that compilers generate for you if you
don’t declare one yourself. In essence, Item 7 is nothing more than a
special case of this Item, though it's important enough to merit calling
out on its own.

Things to Remember

?¢ Never redefine an inherited non-virtual function (L

Item 37: Never redefine a function’s inherited default
parameter value.

Let’s simplify this discussion right from the start. There are only two
kinds of functions you can inherit: virtual and non-virtual. However,
it's always a mistake to redefine an inherited non-virtual function (see
[tem 36), so we can safely limit our discussion here to the situation in
which you inherit a virtual function with a default parameter value.

That being the case, the justification for this Item becomes quite

ctraichtfararard: wrirti1al fiinetinne ara dAsmamicallir haiind kit Aafanll+
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Item 37: Never redefine a function’s inherited default
parameter value.

Let's simplify this discussion right from the start. There are only two
kinds of functions you can inherit: virtual and non-virtual. However,
it's always a mistake to redefine an inherited non-virtual function (see
[tem 36), so we can safely limit our discussion here to the situation in
which you inherit a virtual function with a default parameter value.

That being the case, the justification for this Item becomes quite
straightforward: virtual functions are dynamically bound, but default
parameter values are statically bound.

What's that? You say the difference between static and dynamic bind-
ing has slipped your already overburdened mind? (For the record,
static binding is also known as early binding, and dynamic binding is
also known as late binding.) Let’s review, then.

An object’s static type is the type you declare it to have in the program
text. Consider this class hierarchy:

// a class for geometric shapes
class Shape {
public:
enum ShapeColor { Red, Green, Blue };

// all shapes must offer a function to draw themselves
virtual void draw(ShapeColor color = Red) const = 0;
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pc->draw(Shape::Red); // calls Circle::draw(Shape::Red)
pr->draw(Shape::Red); // calls Rectangle:draw(Shape::Red)

This is all old hat, I know; you surely understand virtual functions.
The twist comes in when you consider virtual functions with default
parameter values, because, as | said above, virtual functions are
dynamically bound, but default parameters are statically bound. That
means you may end up invoking a virtual function defined in a
derived class but using a default parameter value from a base class:

pr->draw(); // calls Rectangle::draw(Shape::Red)!

In this case, pr's dynamic type is Rectangle*, so the Rectangle virtual
function is called, just as you would expect. In Rectangle:draw, the
default parameter value is Green. Because pr's static type is Shapex,
however, the default parameter value for this function call is taken
from the Shape class, not the Rectangle class! The result is a call con-
sisting of a strange and almost certainly unanticipated combination of
the declarations for draw in both the Shape and Rectangle classes.

The fact that ps, pc, and pr are pointers is of no consequence in this
matter. Were they references, the problem would persist. The only
important things are that draw is a virtual function, and one of its
default parameter values is redefined in a derived class.
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classes (see Item 36), this design makes clear that the detault value
for draw’s color parameter should always be Red.

Things to Remember

+ Never redefine an inherited default parameter value, because default
parameter values are statically bound, while virtual functions — the
only functions you should be redefining — are dynamically bound.

184 Item 38 Chapter 6

Item 38: Model “has-a” or “is-implemented-in-terms-
of” through comoosition.

<
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void eat(const Person& p); // anyone can eat

void study(const Student& s); // only students study

Person p; // p is a Person

Student s; // sis a Student

eat(p); // fine, p is a Person

eat(s); // error! a Studentisn’t a Person

Clearly, private inheritance doesn’'t mean is-a. What does it mean
then?

“Whoa!” you say. “Before we get to the meaning, let’s cover the behav-
ior. How does private inheritance behave?” Well, the first rule govern-
ing private inheritance you've just seen in action: in contrast to public
inheritance, compilers will generally not convert a derived class object
(such as Student) into a base class object (such as Person) if the inher-
itance relationship between the classes is private. That's why the call
to eat fails for the object s. The second rule is that members inherited
from a private base class become private members of the derived
class, even if they were protected or public in the base class.

So much for behavior. That brings us to meaning. Private inheritance

<
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classes (because such base classes also incur a size overhead — see
[tem 40). Conceptually, objects of such empty classes should use no
space, because there is no per-object data to be stored. However,
there are technical reasons for C++ decreeing that freestanding
objects must have non-zero size, so if you do this,

class Empty {}; // has no data, so objects should
// use no memory
class HoldsAnInt { // should need only space for an int
private:
int x;
Empty e; // should require no memory

}F

you'll find that sizeof(HoldsAnInt) > sizeof(int); an Empty data member
requires memory. With most compilers, sizeof(Empty) is 1, because

<
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C++'s edict against zero-size freestanding objects is typically satisfied
by the silent insertion of a char into “empty” objects. However, align-
ment requirements (see Item 50) may cause compilers to add padding
to classes like HoldsAnlInt, so it’s likely that HoldsAnInt objects wouldn’t
gain just the size of a char, they would actually enlarge enough to hold
a second int. (On all the compilers I tested, that’s exactly what hap-
pened.)

But perhaps you've noticed that I've been careful to say that “free-
standing” objects mustn’t have zero size. This constraint doesn’t apply
to base class parts of derived class objects, because theyre not free-
standing. If you inherit from Empty instead of containing an object of
that type,

class HoldsAnInt: private Empty {
private:
int x;

|3

<
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But perhaps you've noticed that I've been careful to say that “free-
standing” objects mustn’t have zero size. This constraint doesn’t apply
to base class parts of derived class objects, because they're not free-
standing. If you inherit from Empty instead of containing an object of
that type,

class HoldsAnlInt: private Empty {
private:
intx;

Iy
you're almost sure to find that sizeof(HoldsAnInt) == sizeof(int). This is
known as the empty base optimization (EBO), and it's implemented by
all the compilers I tested. If you're a library developer whose clients
care about space, the EBO is worth knowing about. Also worth know-
ing is that the EBO is generally viable only under single inheritance.
The rules governing C++ object layout generally mean that the EBO
can’'t be applied to derived classes that have more than one base.

In practice, “empty” classes aren’t truly empty. Though they never
have non-static data members, they often contain typedefs, enums,
static data members, or non-virtual functions. The STL has many
technically empty classes that contain useful members (usually type-

<
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seen that a mixture of public inheritance and containment can often
yield the behavior you want, albeit with greater design complexity.
Using private inheritance judiciously means employing it when, hav-
ing considered all the alternatives, it's the best way to express the
relationship between two classes in your software.

Things to Remember

+ Private inheritance means is-implemented-in-terms of. It's usually
inferior to composition, but it makes sense when a derived class
needs access to protected base class members or needs to redefine
inherited virtual functions.

+ Unlike composition, private inheritance can enable the empty base
optimization. This can be important for library developers who strive
to minimize object sizes.

Item 40: Use multiple inheritance judiciously.

<
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class Borrowableltem {
public:
void checkOut();

b

class ElectronicGadget {
private:
bool checkOut() const:

b

class MP3Player:
public Borrowableltem,
public ElectronicGadget

{..}h
MP3Player mp;

mp.checkOut();

// something a library lets you borrow

// check the item out from the library

// perform self-test, return whether
// test succeeds

// note Ml here
// (some libraries loan MP3 players)

// class definition is unimportant

// ambiguous! which checkOut?
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TNote that in this example, the call to checkOut is ambiguous, even
though only one of the two functions is accessible. (checkOut is public
in Borrowableltem but private in ElectronicGadget.) That’s in accord with
the C++ rules for resolving calls to overloaded functions: before seeing
whether a function is accessible, C++ first identifies the function
that’s the best match for the call. It checks accessibility only after
finding the best-match function. In this case, the name checkOut is
ambiguous during name lookup, so neither function overload resolu-
tion nor best match determination takes place. The accessibility of
ElectronicGadget::checkOut is therefore never examined.

To resolve the ambiguity, you must specify which base class’s func-
tion to call:

mp.Borrowableltem::checkOut(); // ah, that checkOut...

6.76x9.25 in <
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class all the time, because it's easier to type. Others (including me)
prefer typename, because it suggests that the parameter need not be a
class type. A few developers employ typename when any type is
allowed and reserve class for when only user-defined types are accept-
able. But from C++’s point of view, class and typename mean exactly
the same thing when declaring a template parameter.

TC++ doesn’t always view class and typename as equivalent, however.
Sometimes you must use typename. To understand when, we have to
talk about two kinds of names you can refer to in a template J)

204 Item 42 Chapter 7

Suppose we have a template for a function that takes an STL-compat-

o ans ihle confainer holdino ohiects that can he assioned tn ints Fuirther
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template<typename C> // print 2Znd element In
void print2nd(const C& container) // container;
{ /! this is not valid C++!
if (container.size() >=2) {
C::const_iterator iter(container.begin()); // getiterator to 1st element

++iter; // move iter to 2nd element
int value = *iter; // copy that element to an int
std::cout << value; // print the int

}

}

I've highlighted the two local variables in this function, iter and value.
The type of iter is C:const_iterator, a type that depends on the template
parameter C. Names in a template that are dependent on a template
parameter are called dependent names. When a dependent name is
nested inside a class, I call it a nested dependent name. C:const_iterator
is a nested dependent name. In fact, it's a nested dependent type
name, i.e., a nested dependent name that refers to a type.

The other local variable in print2nd, value, has type int. int is a name
that does not depend on any template parameter. Such names are
known as non-dependent names, (I have no idea why they're not called
independent names. If, like me, you find the term “non-dependent” an
abomination, you have my sympathies, but “non-dependent” is the
term for these kinds of names, so. like me, roll your eyes and resign
yourself to it.)
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able? In that case, the code above wouldn’t declare a local variable, it
would be a multiplication of C:const_iterator by x! Sure, that sounds
crazy, but it’'s possible, and people who write C++ parsers have to
worry about all possible inputs, even the crazy ones.

%ntil C is known, there’s no way to know whether C:const_iterator is a
type or isn’t, and when the template print2nd is parsed. C isn’t known.
C++ has a rule to resolve this ambiguity: if the parser encounters a
nested dependent name in a template, it assumes that the name is not
a type unless you tell it otherwise. By default, nested dependent
names are not types. (There is an exception to this rule that I'll get to
in a moment.y)

With that in mind, look again at the beginning of print2nd:

template<typename C>
void print2nd(const C& container)

{

if (rontainercizal) >= 2\ {
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in a moment.)
With that in mind, look again at the beginning of print2nd:

template<typename C>
void print2nd(const C& container)

{
if (container.size() >= 2) {
C::const_iterator iter(container.begin());  //this name is assumed to
// notbe a type

Now it should be clear why this isn’'t valid C++. The declaration of iter
makes sense only if C::const_iterator is a type, but we haven't told C++
that it is, and C++ assumes that it's not. To rectify the situation, we
have to tell C++ that C:const_iterator is a type. We do that by putting
typename immediately in front of it:

template<typename C> // this is valid C++
void print2nd(const C& container)

{
if (container.size() >= 2) {
typename C::const_iterator iter(container.begin());

}
}

The general rile is simbple: anvtime vou refer to a nested denendent
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the call to sendClearMsg won't compile, because at this point, compil-
ers know that the base class is the template specialization Msg-
Sender<CompanyZ>, and they know that class doesn’'t offer the
sendClear function that sendClearMsg is trying to call.

Fundamentally, the issue is whether compilers will diagnose invalid
references to base class members sooner (when derived class template
definitions are parsed) or later (when those templates are instantiated
with specific template arguments). C++’s policy is to prefer early diag-
noses, and that’s why it assumes it knows nothing about the contents
of base classes when those classes are instantiated from templates.

Things to Remember

+(ﬁn derived class templates, refer to names in base class templates
via a “this->”" prefix, via using declarations, or via an explicit base
class qualiﬁcatio%

Item 44: Factor parameter-independent code out of

templates.

Templates are a wonderful way to save time and avoid code replica-
tion. Instead of typing 20 similar classes, each with 15 member func-
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plates that do the same thing.

218 Item 45 Chapter 7
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class Top{...};

class Middle: public Top{ ... };
class Bottom: public Middle { ... };
Top *pt1 = new Middle;

Top *pt2 = new Bottom;

const Top *pct2 = pt1;

template<typename T>
class SmartPtr {
public:
explicit SmartPtr(T #realPtr);

b

SmartPtr<Top> pt1 =
SmartPtr<Middle>(new Middle);

SmartPtr<Top> pt2 =

SmartPtr<Bottom>(new Bottom);

SmartPtr<const Top> pct2 = pt1;

// convert Middlex = Top*
// convert Bottom* = Top*
// convert Top* = const Top*

Emulating such conversions in user-defined smart pointer classes is
tricky. We'd need the following code to compile:

// smart pointers are typically
// initialized by built-in pointers

// convert SmartPtr<Middle> =
/I SmartPtr<Top>

// convert SmartPtr<Bottom> =
// SmartPtr<Top>

// convert SmartPtr<Top> =
// SmartPtr<const Top>

A . S
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There is no inherent relationship among different instantiations of the
same template, so compilers view SmartPtr<Middle> and SmartPtr<Top>
as completely different classes, no more closely related than, say, vec-
tor<float> and Widget. To get the conversions among SmartPtr classes
that we want, we have to program them explicitly.

Templates and Generic Programming Item 45 219

In the smart pointer sample code above, each statement creates a new
smart pointer object, so for now we’ll focus on how to write smart
pointer constructors that behave the way we want. A key observation
is that there is no way to write out all the constructors we need. In the

hierarchy above, we can construct a SmartPtr<Top> from a SmartPtr<Mid-
Ala~ nr A CrariDir-DAttAar~ hiit if tha hiararchysr ic aviandad iy tha
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dle> or a SmartPtr<Bottom>, but if the hierarchy is extended in the
future, SmartPtr<Top> objects will have to be constructible from other
smart pointer types. For example, if we later add

class BelowBottom: public Bottom { ... };

we'll need to support the creation of SmartPtr<Top> objects from
SmartPtr<BelowBottom> objects, and we certainly won't want to have to
modify the SmartPtr template to do it.

In principle, the number of constructors we need is unlimited. Since a
template can be instantiated to generate an unlimited number of
functions, it seems that we don't need a constructor function for
SmartPtr, we need a constructor template. Such templates are exam-
ples of member function templates (often just known as member tem-
plates) — templates that generate member functions of a class:

template<typename T>
class SmartPtr {

public:
template<typename U> // member template
SmartPtr(const SmartPtr<U>& other); // for a "generalized
// copy constructor”
L

This says that for every type T and every type U, a SmartPtr<T> can be

rraatard from a CrmartDir-l I harmratica CGnmartPDtr-T~ hac a crnamncetriintnr
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public:
template<typename U> // member template
SmartPtr(const SmartPtr<U>& other); // for a "generalized
// copy constructor”
Iy

This says that for every type T and every type U, a SmartPtr<T> can be
created from a SmartPtr<U>, because SmartPtr<T> has a constructor
that takes a SmartPtr<U> parameter. Constructors like this — ones
that create one object from another object whose type is a different
instantiation of the same template (e.g., create a SmartPtr<T> from a
SmartPtr<U>) — are sometimes known as generalized copy constructors.

The generalized copy constructor above is not declared explicit. That's
deliberate. Type conversions among built-in pointer types (e.g., from
derived to base class pointers) are implicit and require no cast, so it's
reasonable for smart pointers to emulate that behavior. Omitting
explicit on the templatized constructor does just that.

As declared, the generalized copy constructor for SmartPtr offers more
than we want. Yes, we want to be able to create a SmartPtr<Top> from a
SmartPtr<Bottom>, but we don’t want to be able to create a
SmartPtr<Bottom> from a SmartPtr<Top>, as that’s contrary to the
meaning of public inheritance (see Item 32). We also don’t want to be



template<class T> class shared_ptr {

public:
shared_ptr(shared_ptr const&r); // copy constructor
template<class Y> // generalized
shared_ptr(shared_ptr<Y> const&r); // copy constructor
shared_ptr& operator=(shared_ptr const&r); // copy assignment
template<class Y> // generalized

shared_ptr& operator=(shared_ptr<Y> const&r); // copy assignment

222 Item 46 Chapter 7

Things to Remember

+ Use member function templates to generate functions that accept all
compatible tvpes.

+ If vou declare member templates for generalized copy construction
or generalized assignment, your'll still need to declare the normal
copy constructor and copy assignment operalor, too.
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Conceptually, advance just does iter += d, but advance can’t be imple-
mented that way, because only random access iterators support the
+= operation. Less powerful iterator types have to implement advance
by iteratively applying ++ or -- d times.

Um, you don't remembgpr your STL iterator categories? No problem,
we'll do a mini-review. [There are five categories of iterators, corre-
sponding to the operations they support. Input iterators can move only
forward, can move only one step at a time, can only read what they
point to, and can read what theyre pointing to only once. They're
modeled on the read pointer into an input file; the C++ library's
istream_iterators are representative of this category. Output iterators
are analogous, but for output: they move only forward, move only one
step at a time, can only write what they point to, and can write it only
once. Theyre modeled on the write pointer into an output file;
ostream_iterators epitomize this category. These are the two least pow-
erful iterator categories. Because input and output iterators can move
only forward and can read or write what they point to at most once,
they are suitable only for one-pass a]gorithmsé

A more powerful iterator category consists of forward iterators. Such
iterators can do everything input and output iterators can do, plus
they can read or write what they point to more than once. This makes
them viable for multi-pass algorithms. The STL offers no singly linked

list, but some libraries offer one (usually called slist), and iterators into
c11ch contaitnere are forvard iteratore Tteratore inito TR 1'e hached



they are suitable only for one-pass algorithms. 8

For each of the five iterator categories, C++ has a “tag struct” in the
standard library that serves to identify it:
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For each of the five iterator categories, C++ has a “tag struct” in the
standard library that serves to identify it:

228 Item 47 Chapter 7

struct input_iterator_tag {};

struct output_iterator_tag {};

struct forward_iterator_tag: public input_iterator_tag {};

struct bidirectional _iterator_tag: public forward_iterator_tag {};

struct random_access_iterator_tag: public bidirectional_iterator_tag {};

The inheritance relationships among these structs are valid is-a rela-
tionships (see Item 32): it's true that all forward iterators are also
input iterators, etc. We'll see the utility of this inheritance shortly.
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As you can see, iterator_traits is a struct. By convention, traits are
always implemented as structs. Another convention is that the structs
used to implement traits are known as — [ am not making this up —
traits classes.

The way iterator_traits works is that for each type IterT, a typedef named
iterator_category is declared in the struct iterator_traits<lterT>. This
typedef identifies the iterator category of lterT.

iterator_traits implements this in two parts. First, it imposes the
requirement that any user-defined iterator type must contain a nested
typedefl named iterator_category that identifies the appropriate tag
struct. deque’s iterators are random access, for example, so a class for
deque iterators would look something like this:

template <...> // template params elided
class deque {
public:
class iterator {
public:
typedef random_access_iterator_tag iterator_category;

-

list's iterators are bidirectional, however, so they'd do things this way:

template < ...>

~lace lict+ I
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We can now summarize how to use a traits class:

= Create a set of overloaded “worker” functions or function tem-
plates (e.g., doAdvance) that differ in a traits parameter. Implement
each function in accord with the traits information passed.

= Create a “master” function or function template (e.g., advance) that
calls the workers, passing information provided by a traits class.

Traits are widely used in the standard library. There’s iterator_traits, of
course, which, in addition to iterator_category. offers four other pieces
of information about iterators (the most useful of which is value_type
— Item 42 shows an example of its use). There’s also char_traits, which
holds information about character types, and numeric_limits, which
serves up information about numeric types, e.g., their minimum and
maximum representable values, etc. (The name numeric_limits is a bit
of a surprise, because the more common convention is for traits
classes to end with “traits,” but numeric_limits is what it's called, so
numeric_limits is the name we use.)

TRI (see Item 54) introduces a slew of new traits classes that give infor-
mation about types, including is_fundamental<T> (whether T is a built-in
type). is_array<T> (whether T is an array type). and is_base_of<T1, T2>
(whether T1 is the same as or is a base class of T2). All told, TR1 adds
over 50 traits classes to standard C++.

Things to Remember
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numeric_limits is the name we use.)

TRI (see Item 54) introduces a slew of new traits classes that give infor-
mation about types, including is_fundamental<T> (whether T is a built-in
type), is_array<T> (whether T is an array type), and is_base_of<T1, T2>
(whether T1 is the same as or is a base class of T2). All told, TR1 adds
over B0 traits classes to standard C++.

Things to Remember

+(Fl‘rajts classes make information about types available during com-
pilation. They're implemented using templates and template special-
izations.

+ In conjunction with overloading, traits classes make it possible to
perform compile-time if..else tests on type%

Templates and Generic Programming Item 48 233



When operator new is unable to fulfill a memory request, it calls the
new-handler function repeatedly until it can find enough memory. The
code giving rise to these repeated calls is shown in Item 51, but this
high-level description is enough to conclude that a well-designed new-
handler function must do one of the following:

= Make more memory available. This may allow the next memory
allocation attempt inside operator new to succeed. One way to im-
plement this strategy is to allocate a large block of memory at pro-
gram start-up, then release it for use in the program the first time
the new-handler is invoked.

= Install a different new-handler. If the current new-handler can’t
make any more memory available, perhaps it knows of a different
new-handler that can. If so, the current new-handler can install
the other new-handler in its place (by calling set_new_handler). The
next time operator new calls the new-handler function, it will get
the one most recently installed. (A variation on this theme is for a
new-handler to modify its own behavior, so the next time it's in-
voked, it does something different. One way to achieve this is to
have the new-handler modify static, namespace-specific, or global
data that affects the new-handler’s behavior.)

®* Deinstall the new-handler, i.e., pass the null pointer to
set_new_handler. With no new-handler installed, operator new will
throw an exception when memory allocation is unsuccessful.



the one most recently installed. (A variation on this theme is for a
new-handler to modify its own behavior, so the next time it's in-
voked, it does something different. One way to achieve this is to
have the new-handler modify static, namespace-specific, or global
data that affects the new-handler’s behavior.)

®* Deinstall the new-handler, i.e., pass the null pointer to
set_new_handler. With no new-handler installed, operator new will
throw an exception when memory allocation is unsuccessful.

* Throw an exception of type bad_alloc or some type derived from
bad_alloc. Such exceptions will not be caught by operator new, so
they will propagate to the site originating the request for memory.

= Not return, typically by calling abort or exit.

These choices give you considerable flexibility in implementing new-
handler functions.



Until 1993, C++ required that operator new return null when it was
unable to allocate the requested memory. operator new is now speci-
fied to throw a bad_alloc exception, but a lot of C++ was written before
compilers began supporting the revised specification. The C++ stan-
dardization committee didn't want to abandon the test-for-null code
base, so they provided alternative forms of operator new that offer the
traditional failure-yields-null behavior. These forms are called
“nothrow” forms, in part because they employ nothrow objects (defined
in the header <new>) at the point where new is used:

class Widget { ... };

Widget *pw1 = new Widget; // throws bad_alloc if
// allocation fails
if (pw1==0) ... // this test mustfail

Widget *pw2 = new (std:nothrow) Widget;  // returns 0 if allocation for
// the Widget fails

if (pw2 ==0) ... // this test may succeed

Nothrow new offers a less compelling guarantee about exceptions than
is initially apparent. In the expression “new (std:nothrow) Widget,” two
things happen. First, the nothrow version of operator new is called to
allocate enough memory for a Widget object. If that allocation fails,



