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Make your application 
responsive

 Make sure you respond within 5 seconds

 Do expensive operations in a 
background service (relying on notifications to prompt 
users to go back to your activity)

 Do expensive work in a background 
thread

 UI Thread
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Services
 Service - faceless task that runs 

in the background.

 Managed from other application 
components including:

 Services

 Activities
 Broadcast Receivers
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Services
 Perform long-running
  operations

 Downloading resources
 Server synchronization

 Etc ...

 Supply functionality of one application 
  to other applications

 Account service
 Connectivity service
 Audio service
 Etc... - see Context constants
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Creating a Service

 AndroidManifest.xml
 <service>

 <intent-filter>

 <uses-permission>

 Java file – onBind(Intent intent)
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Example
AndroidManifest.xml:
<service

android:name=".NewsService">
<intent-filter>

<action
android:name="bg.sofia.uni.fmi.NEWS_SERVICE" />

</intent-filter>
</service> NewsService.java:

public class NewsService extends Service {
...
@Override
public void onCreate() {

super.onCreate();
mHandler = new Handler();

}

@Override
public IBinder onBind(Intent intent) {

return new NewsServiceBinder(this);
}
...

}
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Initializing the Service

 bindService(Intent service, 
ServiceConnection conn, int flags):

 Starts a Service which lives as long as the 
Activity/Service, that started it, is living

 An instance of the Service can be obtained 
through the ServiceConnection
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Initializing the Service

 startService(Intent intent):

● A service can be stopped by the OS!

 Starts the Service independently of the lifecycle of the 
Activity/Service that has started it

 Overrides bindService and in order to stop the Service a 
consequent stopService(Intent service) invocation 
should be made

 onStartCommand(Intent intent, int flags, int startId)

✔ onStart(Intent intent, int startId)
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Started Services modes

 START_STICKY

 START_NOT_STICKY

 START_REDELIVER_INTENT

 START_FLAG_REDELIVERY

 START_FLAG_RETRY

int  onStartCommand  (Intent intent, int flags, int startId):
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...
private NewsService mService;
private ServiceConnection mConnection = new ServiceConnection() {

@Override
public void onServiceDisconnected(ComponentName name) {

mService = null;
}

@Override
public void onServiceConnected(ComponentName name, IBinder service) {

NewsServiceBinder binder = (NewsServiceBinder)service;
mService = binder.getService();

}
};

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
        setContentView(R.layout.main);
        
        bindService(new Intent("bg.sofia.uni.fmi.NEWS_SERVICE"), mConnection, 

Service.BIND_AUTO_CREATE);
}
...

Example
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Service lifecycle
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Runnable

● A command that can be executed

● Often used to run code in a 
different Thread

● run()
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Background threads

• Use them for time all time-comsuming 
processing like:

– File operations
– Network lookups
– Database transactions
– Complex calculations
– Etc.

• Multiple threads
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Initializing a Thread

● Override run()

●  Provide a Runnable instance

●  Start()

●  setPriority()

●  setDaemon()
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Managing Threads

• Deprecated – stop(), suspend()
• Running:

public void run() {
    while(<boolean>){
        <do some processing here>
    }
}
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Example
// A method called on the main GUI thread.
private void mainThreadProcessing() {

// This moves the time consuming operation to a child thread.
Thread thread = new Thread(null, doBackgroundThreadProcessing, 

“Background”);
thread.start();

}

// A Runnable executed in the background processing method.
private Runnable doBackgroundThreadProcessing = new Runnable() {

public void run() {
backgroundThreadProcessing();

}
};

// Method which does some processing in the background.
private void backgroundThreadProcessing() {
[ ... Time consuming operations ... ]
}
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Handlers

● Handlers and Threads

● UI and background Threads
synchronization

● Allows posting methods on the thread
where the handler was created
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Handlers

• Usage
– Schedule Messages/Runnables
– Enqueue actions to be perfomed on

a different Thread

● Posts can be delayed using postDelay
and postAtTime
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Using Handlers
// Initialize a handler on the main thread.
private Handler handler = new Handler();

// Method which does some processing in the background.
private void backgroundThreadProcessing() {

[ ... Time consuming operations ... ]
handler.post(doUpdateGUI);

}

// Runnable that executes the update GUI method.
private Runnable doUpdateGUI = new Runnable() {

public void run() {
updateGUI();

}
};

private void updateGUI() {
[ ... Open a dialog or modify a GUI element ... ]

}
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AIDL

• Android Interface Definition Language: 
Provides support for interprocess 
communication between services 
and application components
– OS-level primitives
– Process boundaries
– Independent applications
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Implementing AIDL
(data types)

● Java language primitives (int, boolean, float, char, etc.)

● String and CharSequence values

● List (including generic) objects, where each element
  is a supported type.

● Map (not including generic) objects in which each key
  and element is a supported type

● Other AIDL-generated interfaces(an import statement is 
  always needed for these)

● Classes that implement the Parcelable interface.
  An import statement is always needed for these.
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Implementing AIDL

• Java interface-similar syntax
– specify a fully qualified package name

– import all the packages required

● Methods can take zero or more parameters 
  and return void or a supported type
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AIDL file:
package bg.uni.sofia.fmi;

interface NewsUpdater {

void scheduleNewsUpdate(long milis);

}

FmiNewsService class:
@Override
public IBinder onBind(Intent intent) {

return new NewsUpdater.Stub() {

@Override
public void scheduleNewsUpdate(long milis) throws RemoteException {

FmiNewsService.this.scheduleNewsUpdate(milis);
}

};
}

NewsReader activity class:
private NewsUpdater mService;
private ServiceConnection mConnection = new ServiceConnection() {

@Override
public void onServiceDisconnected(ComponentName name) {

mService = null;
}

@Override
public void onServiceConnected(ComponentName name, IBinder service) {

mService = NewsUpdater.Stub.asInterface(service);
}

};
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AsyncTasks

● Perform background operations

● Publish results on the UI thread

● Must be created on the
UI Thread

● No Threads and/or Handlers
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AsyncTasks
● Defined by 3 generic types

✔ Params
✔ Progress
✔ Result

● Lifecycle
✔ onPreExecute()
✔ abstract Result doInBackground(Params... params)
✔ onProgressUpdate(Progress...)
✔ onPostExecute(Result)
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Rules
● The task instance should be created 

on the UI Thread

● execute(Params …) should be invoked
on the UI Thread

● Do not invoked its methods 
manually

● The task can be executed ONLY ONCE
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Example
private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
     protected Long doInBackground(URL... urls) {
         int count = urls.length;
         long totalSize = 0;
         for (int i = 0; i < count; i++) {
             totalSize += Downloader.downloadFile(urls[i]);
             publishProgress((int) ((i / (float) count) * 100));
         }
         return totalSize;
     }

     protected void onProgressUpdate(Integer... progress) {
         setProgressPercent(progress[0]);
     }

     protected void onPostExecute(Long result) {
         showDialog("Downloaded " + result + " bytes");
     }
 }

 new DownloadFilesTask().execute(url1, url2, url3);



Questions ? ?

Questions ?
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