
1

Working in the
Background - Services,

Threads, Handlers,
Async Tasks

Penyo P. Atanasov

Astea Solutions

2

Make your application
responsive

 Make sure you respond within 5 seconds

 Do expensive operations in a
background service (relying on notifications to prompt
users to go back to your activity)

 Do expensive work in a background
thread

 UI Thread

3

Services
 Service - faceless task that runs

in the background.

 Managed from other application
components including:

 Services

 Activities
 Broadcast Receivers

4

Services
 Perform long-running
 operations

 Downloading resources
 Server synchronization

 Etc ...

 Supply functionality of one application
 to other applications

 Account service
 Connectivity service
 Audio service
 Etc... - see Context constants

5

Creating a Service

 AndroidManifest.xml
 <service>

 <intent-filter>

 <uses-permission>

 Java file – onBind(Intent intent)

6

Example
AndroidManifest.xml:
<service

android:name=".NewsService">
<intent-filter>

<action
android:name="bg.sofia.uni.fmi.NEWS_SERVICE" />

</intent-filter>
</service> NewsService.java:

public class NewsService extends Service {
...
@Override
public void onCreate() {

super.onCreate();
mHandler = new Handler();

}

@Override
public IBinder onBind(Intent intent) {

return new NewsServiceBinder(this);
}
...

}

7

Initializing the Service

 bindService(Intent service,
ServiceConnection conn, int flags):

 Starts a Service which lives as long as the
Activity/Service, that started it, is living

 An instance of the Service can be obtained
through the ServiceConnection

8

Initializing the Service

 startService(Intent intent):

● A service can be stopped by the OS!

 Starts the Service independently of the lifecycle of the
Activity/Service that has started it

 Overrides bindService and in order to stop the Service a
consequent stopService(Intent service) invocation
should be made

 onStartCommand(Intent intent, int flags, int startId)

✔ onStart(Intent intent, int startId)

9

Started Services modes

 START_STICKY

 START_NOT_STICKY

 START_REDELIVER_INTENT

 START_FLAG_REDELIVERY

 START_FLAG_RETRY

int onStartCommand (Intent intent, int flags, int startId):

10

...
private NewsService mService;
private ServiceConnection mConnection = new ServiceConnection() {

@Override
public void onServiceDisconnected(ComponentName name) {

mService = null;
}

@Override
public void onServiceConnected(ComponentName name, IBinder service) {

NewsServiceBinder binder = (NewsServiceBinder)service;
mService = binder.getService();

}
};

/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 bindService(new Intent("bg.sofia.uni.fmi.NEWS_SERVICE"), mConnection,

Service.BIND_AUTO_CREATE);
}
...

Example

11

Service lifecycle

12

Runnable

● A command that can be executed

● Often used to run code in a
different Thread

● run()

13

Background threads

• Use them for time all time-comsuming
processing like:

– File operations
– Network lookups
– Database transactions
– Complex calculations
– Etc.

• Multiple threads

14

Initializing a Thread

● Override run()

● Provide a Runnable instance

● Start()

● setPriority()

● setDaemon()

15

Managing Threads

• Deprecated – stop(), suspend()
• Running:

public void run() {
 while(<boolean>){
 <do some processing here>
 }
}

16

Example
// A method called on the main GUI thread.
private void mainThreadProcessing() {

// This moves the time consuming operation to a child thread.
Thread thread = new Thread(null, doBackgroundThreadProcessing,

“Background”);
thread.start();

}

// A Runnable executed in the background processing method.
private Runnable doBackgroundThreadProcessing = new Runnable() {

public void run() {
backgroundThreadProcessing();

}
};

// Method which does some processing in the background.
private void backgroundThreadProcessing() {
[... Time consuming operations ...]
}

17

Handlers

● Handlers and Threads

● UI and background Threads
synchronization

● Allows posting methods on the thread
where the handler was created

18

Handlers

• Usage
– Schedule Messages/Runnables
– Enqueue actions to be perfomed on

a different Thread

● Posts can be delayed using postDelay
and postAtTime

19

Using Handlers
// Initialize a handler on the main thread.
private Handler handler = new Handler();

// Method which does some processing in the background.
private void backgroundThreadProcessing() {

[... Time consuming operations ...]
handler.post(doUpdateGUI);

}

// Runnable that executes the update GUI method.
private Runnable doUpdateGUI = new Runnable() {

public void run() {
updateGUI();

}
};

private void updateGUI() {
[... Open a dialog or modify a GUI element ...]

}

20

AIDL

• Android Interface Definition Language:
Provides support for interprocess
communication between services
and application components
– OS-level primitives
– Process boundaries
– Independent applications

21

Implementing AIDL
(data types)

● Java language primitives (int, boolean, float, char, etc.)

● String and CharSequence values

● List (including generic) objects, where each element
 is a supported type.

● Map (not including generic) objects in which each key
 and element is a supported type

● Other AIDL-generated interfaces(an import statement is
 always needed for these)

● Classes that implement the Parcelable interface.
 An import statement is always needed for these.

22

Implementing AIDL

• Java interface-similar syntax
– specify a fully qualified package name

– import all the packages required

● Methods can take zero or more parameters
 and return void or a supported type

23

AIDL file:
package bg.uni.sofia.fmi;

interface NewsUpdater {

void scheduleNewsUpdate(long milis);

}

FmiNewsService class:
@Override
public IBinder onBind(Intent intent) {

return new NewsUpdater.Stub() {

@Override
public void scheduleNewsUpdate(long milis) throws RemoteException {

FmiNewsService.this.scheduleNewsUpdate(milis);
}

};
}

NewsReader activity class:
private NewsUpdater mService;
private ServiceConnection mConnection = new ServiceConnection() {

@Override
public void onServiceDisconnected(ComponentName name) {

mService = null;
}

@Override
public void onServiceConnected(ComponentName name, IBinder service) {

mService = NewsUpdater.Stub.asInterface(service);
}

};

24

AsyncTasks

● Perform background operations

● Publish results on the UI thread

● Must be created on the
UI Thread

● No Threads and/or Handlers

25

AsyncTasks
● Defined by 3 generic types

✔ Params
✔ Progress
✔ Result

● Lifecycle
✔ onPreExecute()
✔ abstract Result doInBackground(Params... params)
✔ onProgressUpdate(Progress...)
✔ onPostExecute(Result)

26

Rules
● The task instance should be created

on the UI Thread

● execute(Params …) should be invoked
on the UI Thread

● Do not invoked its methods
manually

● The task can be executed ONLY ONCE

27

Example
private class DownloadFilesTask extends AsyncTask<URL, Integer, Long> {
 protected Long doInBackground(URL... urls) {
 int count = urls.length;
 long totalSize = 0;
 for (int i = 0; i < count; i++) {
 totalSize += Downloader.downloadFile(urls[i]);
 publishProgress((int) ((i / (float) count) * 100));
 }
 return totalSize;
 }

 protected void onProgressUpdate(Integer... progress) {
 setProgressPercent(progress[0]);
 }

 protected void onPostExecute(Long result) {
 showDialog("Downloaded " + result + " bytes");
 }
 }

 new DownloadFilesTask().execute(url1, url2, url3);

Questions ? ?

Questions ?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

