
Building Completely
Custom Flex Components

There are many ways...

• creating a composite MXML component
• extending an existing component
• extending UIComponent

To extend the
UIComponent we need to

know the...

UIComponent Life-cycle

Initialization Phase

Update Phase

Destruction Phase

Initialization Phase

Update Phase

Destruction Phase

Construction Stage

• the constructor is called
• don’t create display
objects in the constructor
• set initial values of
component properties
• add event listeners
• initialize other objects

Initialization Phase

Update Phase

Destruction Phase

Construction Stage

Configuration Stage • configuring the newly-
constructed instance
• properties
• styles
• event handlers

Initialization Phase

Update Phase

Destruction Phase

Construction Stage

Configuration Stage

Attachment Stage

• the component is added
to the display list
• now the component has
a parent
• calls initialize()
automatically to move to
the initialization stage

Initialization Phase

Update Phase

Destruction Phase

Construction Stage

Configuration Stage

Attachment Stage

Initialization Stage

• create children objects
• sizing and positioning
• applying the configured
properties and styles

Initialization Phase

Update Phase

Destruction Phase

Construction Stage

Configuration Stage

Attachment Stage

Initialization Stage

Dispatch preinitialize

Process createChildren()

Dispatch initialize

Process invalidation

Process validation

Dispatch creationComplete

Initialization Phase

Update Phase

Destruction Phase

Waiting

Change Request

Invalidation

Validation

User

Framework

The Invalidation
Mechanism

invalidateProperties()

invalidateSize()

invalidateDisplayList()

commitProperties()

measure()

updateDisplayList()

Invalidation Validation

• avoids sequential coupling, or at least such coupling can
be located only in the commitProperties() method instead
of forcing a protocol to the component’s clients
• some kind of optimization - prevents unnecessary work
in case of setting the property multiple times

invalidateProperties()
public function invalidateProperties():void
{
 if (!invalidatePropertiesFlag)
 {
 invalidatePropertiesFlag = true;

 if (parent && UIComponentGlobals.layoutManager)
 UIComponentGlobals.layoutManager.invalidateProperties(this);
 }
}

LayoutManager - the
engine behind Flex’s

measurement and layout

Layout is performed in
three phases

Commit

Measurement

Layout

• each phase is processing
different UIComponents
• prior to moving to the
next phase all
components from the
current phase are
processed
• requests for
components to be
reprocessed may occur
• such requests are
queued for the next run of
the phase

Commit

Measurement

Layout

• commit begins with a
call to validateProperties
• validateProperties
walks through a list of
objects and calls their
validateProperties
• the list is sorted by
reversed nesting level
(top-down or outside-in
ordering)

Commit

Measurement

Layout

• begins with a call to
validateSize
• validateSize walks
through a list of objects
and calls their
validateSize-method
• the list is sorted by
nesting level (starting
from the most deeply
nested objects)
• if the size or position
have changed the object is
queued for the layout
phase
• additionally, the object’s
parent is marked for
measurement and layout

Commit

Measurement

Layout

• starts with a call to
validateDisplayList
• now the list of objects is
sorted by reversed nesting
order

usePhasedInstantiation
• LayoutManager.usePhasedInstantiation is a flag that
indicates whether the LayoutManager allows screen
updates between phases
• if true measurement and layout are done in phases, one
phase per screen update
• if false all three phases are completed before the screen
is updated

MVC Again...

All these are MVCs

M V

C

M V

C

M V

C

view is autonomous,
controller only

updates the model

the controller is
responsible to update

the view

the controller can
also command the

view

ways to build an MVC...

UIComponent

ModelComponent

View

Controller

Composition

IModel

UIComponent

Model

IModel

Controller

ViewViewLogic

Inheritance

What is Spark?

Halo

Spark

UIComponent

SkinnableComponent

SkinnableComponent has
a bit extended life-cycle...

Initialization Stage Dispatch preinitialize

Dispatch initialize

Process invalidation

Process validation

Dispatch creationComplete

Process createChildren() attachSkin()

invalidateSkinState()

findSkinParts() partAdded()

• findSkinParts() would ensure
the designer-developer contract
is fulfilled
• partAdded() is executed for
each part from the contract
• override partAdded() to
perform additional initialization
(e.g. add listeners)

Let’s Build a Spark MVC
Component

Model
package component.support.periodSelector
{

import spark...SkinnableComponent;

public class TimeRange
extends SkinnableComponent

{
 [Bindable] public var minDate:Date;
 [Bindable] public var maxDate:Date;
 [Bindable] public var startDate:Date;
 [Bindable] public var endDate:Date;

}

}

Controller
package component
{
import component.support.periodSelector.Thumb;
import component.support.periodSelector.TimeRange;
import component.support.periodSelector.Timeline;
import spark.components.Button;

[SkinState("normal")]
[SkinState("startDatePopup")]
[SkinState("endDatePopup")]
public class TimePeriodSelector extends TimeRange
{
 [SkinPart(required="true")]
 public var timeline:Timeline;

 [SkinPart(required="true")]
 public var thumb:Thumb;

 [SkinPart(required="true")]
 public var startDateButton:Button;

 [SkinPart(required="true")]
 public var endDateButton:Button;

}

}

View (a.k.a. Skin)
<?xml version="1.0" encoding="utf-8"?>
<s:Skin xmlns:fx="http://ns.adobe.com/mxml/2009"
 xmlns:s="library://ns.adobe.com/flex/spark"
 xmlns:mx="library://ns.adobe.com/flex/mx"
 xmlns:periodSelector="...periodSelector.*">

 <fx:Metadata>
 [HostComponent("co...TimePeriodSelector")]
 </fx:Metadata>

 <s:states>
 <s:State name="normal" />
 <s:State name="startDatePopup" />
 <s:State name="endDatePopup" />
 </s:states>

 <!-- SkinParts -->
 <s:Button id="startDateButton"/>
 <s:Button id="endDateButton"/>
 <periodSelector:Timeline id="timeline"/>
 <periodSelector:Thumb id="thumb"/>
</s:Skin>

http://ns.adobe.com/mxml/2009
http://ns.adobe.com/mxml/2009

Summary
• the are many ways to create and extend Flex Components
• the UIComponent life-cycle
• the invalidating mechanism
• the LayoutManager phases
• different MVCs
• what is Spark?
• the SkinnableComponent life-cycle
• sample Spark MVC Component

