
Optimizing Flex 
Applications



most optimizations can 
be split into 2 categories



Memory

most optimizations can 
be split into 2 categories



Memory
Performance

most optimizations can 
be split into 2 categories



Memory
Performance

most optimizations can 
be split into 2 categories

but garbage collection 
affects both



Garbage Collection 
Empirical Model



Why empirical?



Why empirical?

• this is a description of how we think the garbage 
collection works in the player



Why empirical?

• this is a description of how we think the garbage 
collection works in the player
• this is not an exact technical description



Why empirical?

• this is a description of how we think the garbage 
collection works in the player
• this is not an exact technical description
• the actual behavior is complex and difficult to describe



Why empirical?

• this is a description of how we think the garbage 
collection works in the player
• this is not an exact technical description
• the actual behavior is complex and difficult to describe
• the player may change it at some point



Why empirical?

• this is a description of how we think the garbage 
collection works in the player
• this is not an exact technical description
• the actual behavior is complex and difficult to describe
• the player may change it at some point
• this model worked for us so far



Memory Allocation



Memory Allocation

• most Flash applications need  to allocate small chunks 
of memory of common sizes, but...



Memory Allocation

• most Flash applications need  to allocate small chunks 
of memory of common sizes, but...
• small frequent OS memory allocations can be slow



Memory Allocation

• most Flash applications need  to allocate small chunks 
of memory of common sizes, but...
• small frequent OS memory allocations can be slow
• Flash grabs large chunks of memory from the OS less 
often



Memory Allocation

• most Flash applications need  to allocate small chunks 
of memory of common sizes, but...
• small frequent OS memory allocations can be slow
• Flash grabs large chunks of memory from the OS less 
often
• single large chunk is split into a pool of small blocks of a 
fixed size



Memory Allocation

• most Flash applications need  to allocate small chunks 
of memory of common sizes, but...
• small frequent OS memory allocations can be slow
• Flash grabs large chunks of memory from the OS less 
often
• single large chunk is split into a pool of small blocks of a 
fixed size
• big chunks for Bitmaps, Files, etc. are not pooled



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

after a pool is used up another large 
chunk is allocated from the OS



512 bytes

512 bytes

512 bytes

...

512 bytes

512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

after a pool is used up another large 
chunk is allocated from the OS



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• lets assume that Foo’s 
instance is 512b



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• lets assume that Foo’s 
instance is 512b

var foo : Foo = new Foo();



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• lets assume that Foo’s 
instance is 512b

var foo : Foo = new Foo();

• when allocated another 
512b are used from the pool



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• lets assume that Foo’s 
instance is 512b

var foo : Foo = new Foo();

• when allocated another 
512b are used from the pool



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

foo = null;



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• when “freed” memory is 
not marked unused

foo = null;



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• when “freed” memory is 
not marked unused
• only GC will mark it 
unused

foo = null;



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• when “freed” memory is 
not marked unused
• only GC will mark it 
unused

foo = null;



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• when “freed” memory is 
not marked unused
• only GC will mark it 
unused

foo = null;

Unused but not GC'd



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

Unused but not GC'd



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

Unused but not GC'd



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

foo = new Foo();

Unused but not GC'd



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• when another Foo is 
allocated it might take a 
new block from the pool

foo = new Foo();

Unused but not GC'd



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• when another Foo is 
allocated it might take a 
new block from the pool

foo = new Foo();

Unused but not GC'd



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC doesn’t run Interactively

• when another Foo is 
allocated it might take a 
new block from the pool

foo = new Foo();

Unused but not GC'd

• memory consumption 
grows



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

Unused but not GC'd



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

Unused but not GC'd



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC is only triggered by 
Allocation

Unused but not GC'd



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC is only triggered by 
Allocation

Unused but not GC'd

when the pool start to 
fill up GC will attempt to 
run before OS allocation



512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

GC is only triggered by 
Allocation

Unused but not GC'd

when the pool start to 
fill up GC will attempt to 
run before OS allocation

Almost out!

Run GC!



Since GC is only triggered 
by allocations the memory 
usage of an idle application 

will never change



512 bytes

512 bytes

512 bytes

...

512 bytes

512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

Unused but not GC'd

GC doesn’t run Completely

memory before GC



512 bytes

512 bytes

512 bytes

...

512 bytes

512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

Unused but not GC'd

GC doesn’t run Completely

memory after GC



GC doesn’t run Completely



GC doesn’t run Completely

• the collection is not guaranteed to find all collectible 
blocks in one pass



GC doesn’t run Completely

• the collection is not guaranteed to find all collectible 
blocks in one pass
• the GC must not interfere with rendering and 
interaction



GC doesn’t run Completely

• the collection is not guaranteed to find all collectible 
blocks in one pass
• the GC must not interfere with rendering and 
interaction
• memory may never return to the initial point



512 bytes

512 bytes

512 bytes

...

512 bytes

512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

Unused but not GC'd

GC doesn’t always free OS 
memory

memory before GC

GC will attempt to move blocks 
from one big chunk to another



512 bytes

512 bytes

512 bytes

...

512 bytes

512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

Unused but not GC'd

GC doesn’t always free OS 
memory

memory after GC



512 bytes

512 bytes

512 bytes

...

512 bytes

512 bytes

512 bytes

512 bytes

...

512 bytes

Used

Unused

Unused but not GC'd

GC doesn’t always free OS 
memory

memory after GC

Release to OS



GC is not predictable, so 
how to detect memory 

leaks?



Detecting Memory Leaks



Detecting Memory Leaks
• even small changes like location of mouse and keyboard 
events can affect the total memory used



Detecting Memory Leaks
• even small changes like location of mouse and keyboard 
events can affect the total memory used
• therefore user interaction is not a good test



Detecting Memory Leaks
• even small changes like location of mouse and keyboard 
events can affect the total memory used
• therefore user interaction is not a good test
• you need to be concerned about repeatable sequences



Detecting Memory Leaks
• even small changes like location of mouse and keyboard 
events can affect the total memory used
• therefore user interaction is not a good test
• you need to be concerned about repeatable sequences
• popups coming and going



Detecting Memory Leaks
• even small changes like location of mouse and keyboard 
events can affect the total memory used
• therefore user interaction is not a good test
• you need to be concerned about repeatable sequences
• popups coming and going
• switching between various views



Detecting Memory Leaks
• even small changes like location of mouse and keyboard 
events can affect the total memory used
• therefore user interaction is not a good test
• you need to be concerned about repeatable sequences
• popups coming and going
• switching between various views
• loading and unloading modules



Detecting Memory Leaks
• even small changes like location of mouse and keyboard 
events can affect the total memory used
• therefore user interaction is not a good test
• you need to be concerned about repeatable sequences
• popups coming and going
• switching between various views
• loading and unloading modules
• repeat these sequence long enough and observe how it 
does affect total memory used



bytes

time

Total Memory
increases on each 

module load

Leaking Memory Pattern



bytes

time

Total Memory
reaches a maximum

Without Memory Leaks



The Usual Suspects



The Usual Suspects

• Array



The Usual Suspects

• Array
• Object used as map 



The Usual Suspects

• Array
• Object used as map 
• Dictionary with strong references



The Usual Suspects

• Array
• Object used as map 
• Dictionary with strong references
• Failure to remove event listeners



How Garbage Collection 
Works?



SystemManager

Stage

Application

Popup's Button

Removed Popup

VBox

Button

Model

Used

Unused

Unused but not GC'd

<mx:Application>
    <mx:Model id=”model”/>
    <mx:VBox>
        <mx:Button/>
    ...
</mx:Application>



SystemManager

Stage

Application

Popup's Button

Removed Popup

VBox

Button

Model

Used

Unused

Unused but not GC'd

<mx:Application>
    <mx:Model id=”model”/>
    <mx:VBox>
        <mx:Button/>
    ...
</mx:Application>

• GC starts at the roots of objects trees



SystemManager

Stage

Application

Popup's Button

Removed Popup

VBox

Button

Model

Used

Unused

Unused but not GC'd

<mx:Application>
    <mx:Model id=”model”/>
    <mx:VBox>
        <mx:Button/>
    ...
</mx:Application>

• GC starts at the roots of objects trees
• marks them and all objects they refer to



SystemManager

Stage

Application

Popup's Button

Removed Popup

VBox

Button

Model

Used

Unused

Unused but not GC'd

<mx:Application>
    <mx:Model id=”model”/>
    <mx:VBox>
        <mx:Button/>
    ...
</mx:Application>

• GC starts at the roots of objects trees
• marks them and all objects they refer to
• then go through the heap and free 
unmarked objects



SystemManager

Stage

Application

Popup's Button

Removed Popup

VBox

Button

Model

Used

Unused

Unused but not GC'd

<mx:Application>
    <mx:Model id=”model”/>
    <mx:VBox>
        <mx:Button/>
    ...
</mx:Application>

• GC starts at the roots of objects trees
• marks them and all objects they refer to
• then go through the heap and free 
unmarked objects
• top objects are ApplicationDomain, 
Stage, Stack for local variables



Removing Event Listeners



Application

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Module



Application

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Child

Module



Application

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Child Parent

Module



Application

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Child Parent

Module

doesn’t cause memory leak 
- it is not necessary to 

remove the event listener



Module

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Application



Module

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Parent

Application



Module

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Parent Child

Application



Module

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Parent Child

Application

causes memory leak - the application keeps 
referencing the Module - event listener 

needs to be removed or use weak reference



Reuse Objects



Reuse Objects

• instead of freeing unused objects, you can store them in a 
special cache for later use



Reuse Objects

• instead of freeing unused objects, you can store them in a 
special cache for later use
• thus you can reuse renderers just like the List components 
reuses its items



Unloading Checklist



Unloading Checklist
When unloading modules or third-party content, be sure to: 



Unloading Checklist
When unloading modules or third-party content, be sure to: 
• free bitmap memory



Unloading Checklist
When unloading modules or third-party content, be sure to: 
• free bitmap memory
• stop video streams



Unloading Checklist
When unloading modules or third-party content, be sure to: 
• free bitmap memory
• stop video streams
• stop audio streams



Unloading Checklist
When unloading modules or third-party content, be sure to: 
• free bitmap memory
• stop video streams
• stop audio streams
• stop all MovieClips from animating



Unloading Checklist
When unloading modules or third-party content, be sure to: 
• free bitmap memory
• stop video streams
• stop audio streams
• stop all MovieClips from animating
• remove event listeners to global list of enterFrame, 
exitFrame, etc.



Unloading Checklist
When unloading modules or third-party content, be sure to: 
• free bitmap memory
• stop video streams
• stop audio streams
• stop all MovieClips from animating
• remove event listeners to global list of enterFrame, 
exitFrame, etc.
• stop any downloads (http, sockets, FileReference)



Unloading Checklist
When unloading modules or third-party content, be sure to: 
• free bitmap memory
• stop video streams
• stop audio streams
• stop all MovieClips from animating
• remove event listeners to global list of enterFrame, 
exitFrame, etc.
• stop any downloads (http, sockets, FileReference)
• clear any fonts from the font table



Unloading Checklist
When unloading modules or third-party content, be sure to: 
• free bitmap memory
• stop video streams
• stop audio streams
• stop all MovieClips from animating
• remove event listeners to global list of enterFrame, 
exitFrame, etc.
• stop any downloads (http, sockets, FileReference)
• clear any fonts from the font table
...or use Loader.unloadAndStop() (only in Flash 10)



Optimization Rules of Thumb



Optimization Rules of Thumb

• always compile in strict mode



Optimization Rules of Thumb

• always compile in strict mode
• use typed data structures



Optimization Rules of Thumb

• always compile in strict mode
• use typed data structures
• use sealed classes instead dynamic classes



Optimization Rules of Thumb

• always compile in strict mode
• use typed data structures
• use sealed classes instead dynamic classes
• avoid globals when code is deeply nested - the VM will 
lookup for globals in each scope chain from the bottom to 
the top



Optimization Rules of Thumb

• always compile in strict mode
• use typed data structures
• use sealed classes instead dynamic classes
• avoid globals when code is deeply nested - the VM will 
lookup for globals in each scope chain from the bottom to 
the top
• use vector<> instead Array (only in Flash 10)



Other optimization 
techniques



the fastest way to copy 
an Array

var copy : Array = sourceArray.concat();

for (var i : int = 0; i < n; i++)
/* not */
for (var i : Number = 0; i < n; i++)

use integers for 
iterations

5000 * 0.001
/* instead of */
5000 / 1000

Multiply vs. Divide



avoid the setStyle 
method - one of the most 

expensive calls in the 
framework

comp.setStyle(“color”, 0xff00ff);

<mx:Panel> 
    <mx:VBox> 
        <mx:HBox> 
            <mx:Label text="Label 1"/> 
             <mx:VBox> 
                  <mx:Label text="Label 2"/>  
              </mx:VBox> 
              <mx:HBox> 
                  <mx:Label text="Label 3"/> 
                  <mx:VBox> 
                      <mx:Label text="Label 4"/> 
                  </mx:VBox> 
              </mx:HBox> 
          </mx:HBox> 
      </mx:VBox> 
</mx:Panel> 

too many nested 
containers dramatically 
reduces the performance



Reduce Application File-Size



Reduce Application File-Size

• you can reduce noticeably the application size if you use 
the Flex Framework as RSL



Reduce Application File-Size

• you can reduce noticeably the application size if you use 
the Flex Framework as RSL
• externalize resources into resource modules



Reduce Application File-Size

• you can reduce noticeably the application size if you use 
the Flex Framework as RSL
• externalize resources into resource modules
• modularizing the application



Reduce Application File-Size

• you can reduce noticeably the application size if you use 
the Flex Framework as RSL
• externalize resources into resource modules
• modularizing the application
• create a custom RSL (include only the referenced classes)



Reduce Application File-Size

• you can reduce noticeably the application size if you use 
the Flex Framework as RSL
• externalize resources into resource modules
• modularizing the application
• create a custom RSL (include only the referenced classes)
• use the Flex SDK optimizer tool



Summary



Summary
• Flash memory allocation - big chunks less often, instead of small 
chunks frequently



Summary
• Flash memory allocation - big chunks less often, instead of small 
chunks frequently
• the GC is only triggered by allocation



Summary
• Flash memory allocation - big chunks less often, instead of small 
chunks frequently
• the GC is only triggered by allocation
• the GC doesn’t run completely - all unused memory is not released 
in one pass



Summary
• Flash memory allocation - big chunks less often, instead of small 
chunks frequently
• the GC is only triggered by allocation
• the GC doesn’t run completely - all unused memory is not released 
in one pass
• GC is not predictable



Summary
• Flash memory allocation - big chunks less often, instead of small 
chunks frequently
• the GC is only triggered by allocation
• the GC doesn’t run completely - all unused memory is not released 
in one pass
• GC is not predictable
• detecting memory leaks



Summary
• Flash memory allocation - big chunks less often, instead of small 
chunks frequently
• the GC is only triggered by allocation
• the GC doesn’t run completely - all unused memory is not released 
in one pass
• GC is not predictable
• detecting memory leaks
• how GC works



Summary
• Flash memory allocation - big chunks less often, instead of small 
chunks frequently
• the GC is only triggered by allocation
• the GC doesn’t run completely - all unused memory is not released 
in one pass
• GC is not predictable
• detecting memory leaks
• how GC works
• removing event dispatchers



Summary
• Flash memory allocation - big chunks less often, instead of small 
chunks frequently
• the GC is only triggered by allocation
• the GC doesn’t run completely - all unused memory is not released 
in one pass
• GC is not predictable
• detecting memory leaks
• how GC works
• removing event dispatchers
• various optimization techniques


