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most optimizations can 
be split into 2 categories

but garbage collection 
affects both
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Why empirical?

• this is a description of how we think the garbage 
collection works in the player
• this is not an exact technical description
• the actual behavior is complex and difficult to describe
• the player may change it at some point
• this model worked for us so far
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Memory Allocation

• most Flash applications need  to allocate small chunks 
of memory of common sizes, but...
• small frequent OS memory allocations can be slow
• Flash grabs large chunks of memory from the OS less 
often
• single large chunk is split into a pool of small blocks of a 
fixed size
• big chunks for Bitmaps, Files, etc. are not pooled
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• when another Foo is 
allocated it might take a 
new block from the pool

foo = new Foo();

Unused but not GC'd

• memory consumption 
grows
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Run GC!



Since GC is only triggered 
by allocations the memory 
usage of an idle application 

will never change
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GC doesn’t run Completely

• the collection is not guaranteed to find all collectible 
blocks in one pass
• the GC must not interfere with rendering and 
interaction
• memory may never return to the initial point
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GC is not predictable, so 
how to detect memory 

leaks?
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Detecting Memory Leaks
• even small changes like location of mouse and keyboard 
events can affect the total memory used
• therefore user interaction is not a good test
• you need to be concerned about repeatable sequences
• popups coming and going
• switching between various views
• loading and unloading modules
• repeat these sequence long enough and observe how it 
does affect total memory used
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bytes

time

Total Memory
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Without Memory Leaks
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The Usual Suspects

• Array
• Object used as map 
• Dictionary with strong references
• Failure to remove event listeners



How Garbage Collection 
Works?
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SystemManager

Stage

Application

Popup's Button

Removed Popup

VBox

Button

Model

Used

Unused

Unused but not GC'd

<mx:Application>
    <mx:Model id=”model”/>
    <mx:VBox>
        <mx:Button/>
    ...
</mx:Application>

• GC starts at the roots of objects trees
• marks them and all objects they refer to
• then go through the heap and free 
unmarked objects
• top objects are ApplicationDomain, 
Stage, Stack for local variables
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dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Child Parent

Module

doesn’t cause memory leak 
- it is not necessary to 

remove the event listener



Module

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Application



Module

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Parent

Application



Module

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Parent Child

Application



Module

dispatchEvent()
addEventListener()
removeEventListener()

Dispatcher

handleSomeEvent()

Handler

dispatch SOME_EVENT

listener

Parent Child

Application

causes memory leak - the application keeps 
referencing the Module - event listener 

needs to be removed or use weak reference
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Reuse Objects

• instead of freeing unused objects, you can store them in a 
special cache for later use
• thus you can reuse renderers just like the List components 
reuses its items
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Unloading Checklist
When unloading modules or third-party content, be sure to: 
• free bitmap memory
• stop video streams
• stop audio streams
• stop all MovieClips from animating
• remove event listeners to global list of enterFrame, 
exitFrame, etc.
• stop any downloads (http, sockets, FileReference)
• clear any fonts from the font table
...or use Loader.unloadAndStop() (only in Flash 10)



Optimization Rules of Thumb



Optimization Rules of Thumb

• always compile in strict mode



Optimization Rules of Thumb

• always compile in strict mode
• use typed data structures



Optimization Rules of Thumb

• always compile in strict mode
• use typed data structures
• use sealed classes instead dynamic classes



Optimization Rules of Thumb

• always compile in strict mode
• use typed data structures
• use sealed classes instead dynamic classes
• avoid globals when code is deeply nested - the VM will 
lookup for globals in each scope chain from the bottom to 
the top



Optimization Rules of Thumb

• always compile in strict mode
• use typed data structures
• use sealed classes instead dynamic classes
• avoid globals when code is deeply nested - the VM will 
lookup for globals in each scope chain from the bottom to 
the top
• use vector<> instead Array (only in Flash 10)



Other optimization 
techniques



the fastest way to copy 
an Array

var copy : Array = sourceArray.concat();

for (var i : int = 0; i < n; i++)
/* not */
for (var i : Number = 0; i < n; i++)

use integers for 
iterations

5000 * 0.001
/* instead of */
5000 / 1000

Multiply vs. Divide



avoid the setStyle 
method - one of the most 

expensive calls in the 
framework

comp.setStyle(“color”, 0xff00ff);

<mx:Panel> 
    <mx:VBox> 
        <mx:HBox> 
            <mx:Label text="Label 1"/> 
             <mx:VBox> 
                  <mx:Label text="Label 2"/>  
              </mx:VBox> 
              <mx:HBox> 
                  <mx:Label text="Label 3"/> 
                  <mx:VBox> 
                      <mx:Label text="Label 4"/> 
                  </mx:VBox> 
              </mx:HBox> 
          </mx:HBox> 
      </mx:VBox> 
</mx:Panel> 

too many nested 
containers dramatically 
reduces the performance
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Reduce Application File-Size

• you can reduce noticeably the application size if you use 
the Flex Framework as RSL
• externalize resources into resource modules
• modularizing the application
• create a custom RSL (include only the referenced classes)
• use the Flex SDK optimizer tool
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Summary
• Flash memory allocation - big chunks less often, instead of small 
chunks frequently
• the GC is only triggered by allocation
• the GC doesn’t run completely - all unused memory is not released 
in one pass
• GC is not predictable
• detecting memory leaks
• how GC works
• removing event dispatchers
• various optimization techniques


