ICTinSES

I Drag and drop

Lesson N217

I Following

Following the mouse

Links graphical object - mouse
* Object follows the mouse
* Object moves with the mouse
Following the mouse
* Easier to implement
* Dow not require selection of current object
* Convenient with orthographic projection

Types of links

Hard link
* Object linked to the mouse
* Moving exactly with the mouse
* Moving only when the mouse is moving

Soft link
* Object linked as with elastic thread
* Moving almost like the mouse
* Moving even if the mouse is not moving

Implementation of hard link

* Converting mouse coordinates to graphical coordinates that
define object’s center

function mouseMove(event)
{
var x = event.clientX
- event.target.offsetlLeft
- event.target.offsetWidth/2;
var y = -(event.clientY
- event.target.offsetTop
- event.target.offsetHeight/2);
s.center = [X,y,0];

1701 Hard link

c @

I‘f:xl
WL

oo = |

e ﬁ Q, Search

In @0 ® =

TRYIT

Example-1701 Hard link/Example-1701 Hard link.html
Example-1701 Hard link/Example-1701 Hard link.html

Implementation of soft link

* Graphical coordinates are recorder in mouseMove into global
variables x and y

* The loop animate moves the object with linear combination
towards the recorded x and y

var x=0, y=0;
function mouseMove(event) { x=...; y=...; }
function animate()
{
var k = 0.92;
s.center[0] = s.center[0]*k+(1-k)*x;
s.center[1] = s.center[1]*k+(1-k)*y;
}

1702 Soft link

c @

Li)
'\.I/

oo = |

e ﬁ Q, Search

In @0 ® =

TRYIT

Example-1702 Soft link/Example-1702 Soft link.html
Example-1702 Soft link/Example-1702 Soft link.html

A chain of soft links
* Several soft-chained objects
e Similar implementation, with linear combination

function mouseMove(event) {s[@].center = ...; }
function animate()
{
var k = 0.85;
for (var i=1; i<n; i++)
{
s[i].center[0]
s[i].center[1]

}

s[i].center[@]*k+(1-k)*s[i-1]...
s[i].center[1]*k+(1-k)*s[i-1]...

}

1703 Soft link chjects

C o @

@0000°°*%)

TRYIT

Example-1703 Soft link objects/Example-1703 Soft link objects.html
Example-1703 Soft link objects/Example-1703 Soft link objects.html

I Object selection

Selection with mouse

Using selection with mouse

* Using an object to manipulate

* This includes selecting an object to drag
Problem

* View point is not fixed

* Objects may have irregular shapes

* Objects may contain other objects

Calculated selection

Idea

* Calculating the screen area of each objects

* Checking whether mouse cursor is in this area
Applicability

* Mostly when calculations are not difficult

* Convenient projection and view point

* Suitable shape, position and orientation of objects

Example
* Three spheres, orthographic projection, view point on Z
* Calculating distances between cursor and spheres’ centers
* Showing the name of the selected sphere

if (distance(a.center,[x,y])<=50)
obj.innerHTML = 'a‘;

else

if (distance(b.center,[x,y])<=50)
obj.innerHTML = 'b’;

else

if (distance(c.center,[x,y])<=50)
obj.innerHTML = 'c';

1704 Calculated selection

C o @

oo = |

e ﬁ Q, Search

In @0 ® =

Objects: a

TRYIT

Example-1704 Calculated selection/Example-1704 Calculated selection.html
Example-1704 Calculated selection/Example-1704 Calculated selection.html

Modified example
* Many spheres, different sizes
* Same idea - calculating distances and comparing with radii

for (var 1=0; i<n; i++)
if (distance(a[i].center,[x,y])<=a[i].radius)
obj.innerHTML = 'a['+i+']"';

1705 Calculated selection 2 b4 EI@

g & @ - & % | Q Search In @O @®

0]

Object: a[18]

TRYIT

Example-1705 Calculated selection 2/Example-1705 Calculated selection 2.html
Example-1705 Calculated selection 2/Example-1705 Calculated selection 2.html

Any shape &

Selecting object with any shape
* With objectAtPoint (x,y)
* Returning the object at give pixel or null, if there are no object
* Coordinates x and y are clientX and clientY of mouse events
Important

* The method checks only objects which property interactive is
set to true

Note
* Result null is also produces when it is not possible to uniquely
identify a single object
* Happens when pixel’s colour is generated from several sources:

A contour pixel partly inherits the colour from the background

A colour of pixel on the boundary of two objects contains portions of
both their colours

Example
* Three sphere with turned on interactive

* Selecting object with objectAtPoint and coordinates from the
event e

p = new Suica();

a = sphere([-150,0,0],50).custom({
info: 'a’,
interactive: true});

function mouseMove(e)
{ var o = p.objectAtPoint(e.clientX,e.clientY);
if (o) obj.innerHTML = o.info;
..}

1706 objectAtPoint x EI@

C @ © s & 9 | Q search In O ® =

Object: b

TRYIT

Example-1706 objectAtPoint/Example-1706 objectAtPoint.html
Example-1706 objectAtPoint/Example-1706 objectAtPoint.html

Object reaction

* Currently selected sphere lastObj is larger

* When a new sphere is selected in newObj, the old one reverts
its size

var lastObj;

function mouseMove(event)

{
var newObj = p.objectAtPoint(...);

if (lastObj) lastObj.radius = 50;

lastObj = newObj?newObj:null;

if (lastObj) lastObj.radius = 860;
}

1707 Ohbject reaction p 4 EI@

¢ o @ ees o | | Q Search I O ® =

TRYIT

Example-1707 Object reaction/Example-1707 Object reaction.html
Example-1707 Object reaction/Example-1707 Object reaction.html

Example &

Ring of columns
* Cuboids in a circle
* All have the same height
* When the mouse cursor hover over a cuboid, it becomes short
* All short cuboids grow to their initial height
* The sceneis rotating continuously

Implementation
* Columns are cuboids with modified origin
* Rotation with spin places them on a circle
* All objects are interactive and can be selected by objectAtPoint

n = 50;

a=1[];

for (var i=0; i<n; i++)

a.push(cuboid([0,0,-5],[1,1,15]).custom({
interactive: true,
origin: [10,0,-0.5],
spin: i/n*2*Math.PI,
1))

* Scene rotation with lookAt (time slowed down 4 times)

var t = Sulca.time/4;
lookAt ([50*Math.cos(t),50*Math.sin(t),20],...);

* Gradual grow of cuboids by 2% per frame, applied for heights
less than 15 units

for (var i=0; i<n; i++)
if (a[i].sizes[2]<15)
al[i].sizes[2] *= 1.02;
* Looking for object obj when mouse moves
* If there is object — make it short

var obj = p.objectAtPoint(event.clientX,...);
if (obj) obj.sizes[2] = 0.1;

1708 Ring of columns

C & ®

oo = |

e 1:? Q, search

In @0 ® =

TRYIT

Example-1708 Ring of columns/Example-1708 Ring of columns.html
Example-1708 Ring of columns/Example-1708 Ring of columns.html

I Drag and drop

Phases

Phases of dragging and dropping
* Pressing a button - selecting an object
* Mouse motion — changing an object
* Releasing a button — dropping an object

Combining actions at button pressing

* If an object is grabbed, start its dragging
* If no object is grabbed, start rotating the scene

Naive implementation

Events

* Capturing events mousedown, mouseup and mousemove
* Selecting object in obj when mouse button is pressed

p.gl.canvas.addEventListener('mousedown',...);
p.gl.canvas.addEventListener('mouseup’,...);
p.gl.canvas.addEventListener('mousemove',...);

function mouseDown(event)

{
obj=p.objectAtPoint(event.clientX,event.clientY);

}

Events

* Forgetting selected object when mouse button is released
* While moving, if there is selected object, change its center

function mouseUp(event)

{
obj

}

function mouseMove(event)

{

var X = ...;

var y = -(...);

if (obj) obj.center = [Xx,y,0];
}

undefined;

1709 Maive drag and drop X EI@

C @ © s & 9 | Q search In O ® =

TRYIT

Example-1709 Naive drag and drop/Example-1709 Naive drag and drop.html
Example-1709 Naive drag and drop/Example-1709 Naive drag and drop.html

Problem

Dragging is not natural
* Object always centered on the cursor

Naive dragging Desired dragging

Solution N21
* Vector v from the grab location to the center
* Calculating the center from the drag location using this vector

drag
location

grab
location

Solution N22
* Vector v from the grab location to drag location
* Moving the center with this vector

drag
location

grab
location

Comparison

Solution Ne1l Solution Ne2

Vector v is calculated once at
the beginning of the drag

No need to remember the
last coordinates

Useful for dragging that
depends on the overall offset

Makes the traditional
dragging easier

Vector v is calculated at every
step of the drag

There is need to remember
the last coordinates

Useful for dragging that
depends on relative offset

Makes additional effects
easier (e.g. inertia)

Dragging &

Implementation of solution N22
* Finding object in obj when a button is pressed

* Remembering coordinates x and y — no conversion to local
coordinates, working with relative motion only

function mouseDown(event)
{
x = event.clientX;
y = event.clientY;
obj = p.objectAtPoint(x,y);

* During motion only the center is updated, in respect to the
cursor’s offset

* Subtracting in Y because screen Y and graphical Y have opposite
directions

* Remembering the [ast x and y

function mouseMove(event)

{

obj.center[@] += event.clientX-x;
obj.center[1l] -= event.clientY-y;

x = event.clientX;
y = event.clientY;

1710 Drag and drop x EI@

C @ © s & 9 | Q search In O ® =

TRYIT

Example-1710 Drag and drop/Example-1710 Drag and drop.html
Example-1710 Drag and drop/Example-1710 Drag and drop.html

I Dragging a scene

2D interactivity

Goal
* Having a 2D scene
e Sliding the scene interactively
* Scaling the scene interactively

Interface
* Sliding with the left mouse button
* Scaling with vertical motion and the right mouse button

Implementation
* Using mousedown and mousemove, without mouseup
* Removing the context menu with contextmenu

* When a button is pressed just store coordinates x and y

. ..addEventListener('mousedown’,mouseDown,false);

. ..addEventListener('mousemove’,mouseMove,false);

. . .addEventListener('contextmenu’,
function(e){e.preventDefault();},false);

function mouseDown(event)

{

x = event.clientX;
y = event.clientyY;

}

Mouse motion
* The view point is defined by lookX and lookY
* Scaling is implemented as distancing based on lookS

function mouseMove(event)

{

lookAt ([lookX,lookY,lookS*650],

[lookX, lookY,0], [0,1,0]);
event.clientX;
y = event.clientyY;

X
!

* Pressing the left button transfers offset to lookX and lookY
* Offset is scaled by lookS
* Pressing the right button changes the scale factor lookS

if (event.buttons==1)

{
lookX -= lookS*(event.clientX-x);

lookY += lookS*(event.clientY-y);

}
if (event.buttons==2)

{
lookS *= Math.pow(1.01,event.clientY-y);

}

- 'f.?| | O\ Search

N @ ®

N

Example-1711 Interactive 2D scene/Example-1711 Interactive 2D scene.html
Example-1711 Interactive 2D scene/Example-1711 Interactive 2D scene.html

3D interactivity

Goal
* Having a 3D scene
* Rotating the scene interactively
* Scaling the scene interactively

Interface
* Rotating with the left mouse button
* Scaling with vertical motion and the right mouse button

Implementation

* View point on a sphere with radius lookD

* Angular coordinates in lookA and lookB

* Target fixed at (0,0,0), up vector fixed to (0,0,1)

lookAt ([lookD*cos(lookA)*cos(lookB),

lookD*sin(lookA)*cos(lookB),
lookD*sin(lookB)], [0,0,0], [0,0,1]);

* Distance is raised on power (why?)

* Added restriction on distance

lookD *= Math.pow(1.01,event.clientY-y);
if (lookD<10) lookD=10;
if (lookD>1000) lookD=1000;

* Angles for the spherical coordinates are bound to the horizontal
and vertical mouse motion

* Value 200 means motion of 200 pixels corresponds to rotation
of 1 radian

* Vertical angle is restricted to avoid looking from the top or the
bottom (there the up vector is seen as zero vector)

lookA -= (event.clientX-x)/200;

lookB += (event.clientY-y)/200;
if (lookB>+1.5) lookB=+1.5;
if (lookB<-1.5) lookB=-1.5;

1712 Interactive 30 scene

C & ®

e = |

e ﬁ Q, search

In @0 ® =

TRYIT

Example-1712 Interactive 3D scene/Example-1712 Interactive 3D scene.html
Example-1712 Interactive 3D scene/Example-1712 Interactive 3D scene.html

I Summary

Following and selecting an object

Following the mouse
* Hard link — fixed distance
* Soft link — elastic distance
Selecting an object
* With calculating its position
* With the function objectAtPoint
* Only interactive objects are processed by objectAtPoint

.,,)[ﬁ

Drag and drop

Dragging with the mouse
* Step 1 - grabbing (selecting) an object
* Step 2 — moving (following)
* Step 3 - dropping the object
Scene dragging
* With dragging of the view point
* Possibility for interactive rotation of the scene
* Possibility for interactive navigation in the scene

LOx

>
-

ICTinSES

I The end

Comments, questions

