
ICT in SES

Bound drag and drop

Lesson №18

Restrictions

Dragging with restrictions

Previous lesson

• Free (unbound) dragging

• Position depends only on mouse position

In reality

• Object motion is restricted

• Different reasons for restrictions

• Leads to “disagreement” between mouse and object

Reasons of restrictions

Conceptual (caused by design)

• Motion on a circle

• Motion on the surface of a sphere

• Motion on the edges of a cube

Physical (caused by external factors)

• The code does not work for all input values

• Difficult to support smooth motions

• Limited screen or window size

Idea

Parametric motion

• There are always parameters – at least mouse coordinates are
such parameters

Techniques

• Binding parameters

• Binding calculated values

• Finding most useful results

Expectations

• No object dragging, only object relocation

• Mouse cursor used only for initial grabbing

• During motion the cursor may be away from the object

Goals

• Intuitive object motions

• Easy implementation

Dragging along a line

Dragging along a line and a segment

With linear combination

• Parameter is controlled by the mouse

• Linear combination uses this parameter to find position

Closest point

• More complex calculations

• Dragging appears more natural

Dragging with linear combination

Dragging along a line

• Object’s center is on the line through points p1 and p2

• Captured motion changes linear combination’s parameter k for
finding the new center

if (obj)
{
 k -= (event.clientX-x)/500;
 s.center[0] = p1[0]*k+(1-k)*p2[0];
 s.center[1] = p1[1]*k+(1-k)*p2[1];
}
x = event.clientX;

TRY IT

Example-1801 Line and linear combination/Example-1801 Line and linear combination.html
Example-1801 Line and linear combination/Example-1801 Line and linear combination.html

Dragging along a segment

• Similar to dragging along a line

• Additional restriction k[0,1]

• Link between mouse and object is broken – i.e. the cursor could
go away from the segment (and the object)

if (obj)
{
 k -= (event.clientX-x)/500;
 if (k<0) k=0;
 if (k>1) k=1;
 s.center[0] = p1[0]*k+(1-k)*p2[0];
 s.center[1] = p1[1]*k+(1-k)*p2[1];
}

TRY IT

Example-1802 Segment and linear combination/Example-1802 Segment and linear combination.html
Example-1802 Segment and linear combination/Example-1802 Segment and linear combination.html

Improvement

• Sphere is dragged up to the limiters

Distance

Parameter k

p2

0

0

5

(R+5)/L

L

1

R+5

R

L-R-5

1-(R+5)/L

p1
R

5

segment

far left
position

far right
position

Implementation

• The domain of k is simetrically reduced with kLimit, i.e.
k[0+kLimit,1-kLimit]

• Value of kLimit is the sum of both radii (limiter’s and object’s)
relative to the segment length

kLimit = (s.radius+5)/
 Math.sqrt((p1[0]-p2[0])*(p1[0]-p2[0]) +
 (p1[1]-p2[1])*(p1[1]-p2[1]));
...
if (k<kLimit) k=kLimit;
if (k>1-kLimit) k=1-kLimit;

TRY IT

Example-1803 Segment and linear combination 2/Example-1803 Segment and linear combination 2.html
Example-1803 Segment and linear combination 2/Example-1803 Segment and linear combination 2.html

Closest point

The closest point problem

• Given a line through two points A and B

• Given a random point C

• Find point D on the line that is closest to C

A

B

C

D

Решение

• Working with vectors:

AD = AB.k

CD = CA + AD = CA + AB.k

CD  AD  CD  AB  CD. AB = 0  CA + AB.k . AB = 0

• Solving for k and AD = AB.k leads to solution for D

A

B

C

D

Implementation

• Changing points A and B for a line in motion

• Calculating k from points A, B and C

• Finding point D on the line as D = A+AB.k

A = [...];
B = [...];

AB = vectorPoints(B,A);
k =((C.center[0]-A[0])*AB[0]+(C.center[1]-A[1])*AB[1])
 /(AB[0]*AB[0]+AB[1]*AB[1]);
D.center[0] = A[0]+k*AB[0];
D.center[1] = A[1]+k*AB[1];

TRY IT

Example-1804 Line and closest point/Example-1804 Line and closest point.html
Example-1804 Line and closest point/Example-1804 Line and closest point.html

Closest point to a segment

• Same algorithm, same calculations

• For D to be between A and B, it needs k[0,1]

• This comes from the linear combination

Is it a coincidence?

• Checking: A+AB.k = A+(B-A)k = A(1-k)+kB

k = ...;
if (k<0) k=0;
if (k>1) k=1;

TRY IT

Example-1805 Segment and closest point/Example-1805 Segment and closest point.html
Example-1805 Segment and closest point/Example-1805 Segment and closest point.html

Dragging with the closest point

Dragging along a line

• Event processing remembers the last graphical coordinates and
whether there is grabbed object

function mouseDown(event)
{
 obj = p.objectAtPoint(...);
 mouseMove(event);
}
function mouseUp(event) {obj = null;}
function mouseMove(event) {x = ...; y = -(...);}

• Vector AB and the square of its length L are calculated once (the
line in the example is not moving)

AB = vectorPoints(B,A);
L = AB[0]*AB[0]+AB[1]*AB[1];
...
function animate()
{
 if (obj)
 {
 k = ((x-A[0])*AB[0]+(y-A[1])*AB[1])/L;
 D.center[0] = A[0]+k*AB[0];
 D.center[1] = A[1]+k*AB[1];
 }
}

TRY IT

Example-1806 Drag along a line/Example-1806 Drag along a line.html
Example-1806 Drag along a line/Example-1806 Drag along a line.html

Dragging along a segment

• Adding restriction on k

function animate()
{
 if (obj)
 {
 k =((x-A[0])*AB[0]+(y-A[1])*AB[1])/L;
 if (k<0) k=0;
 if (k>1) k=1;

 D.center[0] = A[0]+k*AB[0];
 D.center[1] = A[1]+k*AB[1];
 }
}

TRY IT

Example-1807 Drag along a segment/Example-1807 Drag along a segment.html
Example-1807 Drag along a segment/Example-1807 Drag along a segment.html

Dragging along a circle

Dragging along a circle

With angle

• Controlling a parameter with the mouse

• Using the parameter as an angle in polar coordinates

• Using for dragging along a circle or an arc

With closest point

• Projecting the point on the circle

• Harder for an arc

Dragging with an angle

• Local property alpha for the angle along the circle

• Offset divided by 100 – i.e. 100 pixels is 1 radian

function mouseMove(event)
{
 if (obj)
 {
 obj.alpha -= (event.clientX-x)/100;
 obj.center = [120*Math.cos(obj.alpha),
 120*Math.sin(obj.alpha),0];
 }
 x = event.clientX;
}

TRY IT

Example-1808 Drag along a circle/Example-1808 Drag along a circle.html
Example-1808 Drag along a circle/Example-1808 Drag along a circle.html

Dragging with the closest point

• Mouse position is scaled so that the distance is 120 (as is the
radius of the circle)

• This is the dragged object

function mouseMove(event)
{ if (obj)
 {
 var x = ...;
 var y = -(...);
 var d = Math.sqrt(x*x+y*y);
 obj.center[0] = 120*x/d;
 obj.center[1] = 120*y/d;
 }
}

TRY IT

Example-1809 Drag along a circle 2/Example-1809 Drag along a circle 2.html
Example-1809 Drag along a circle 2/Example-1809 Drag along a circle 2.html

Comparison of dragging along a circle

With parameter angle With closest point

Lost of intuitiveness in some
parts of the dragging

Intuitiveness for the whole
duration of dragging

Easy adaptation to dragging
along an arc

Harder to implement to
dragging along an arc

Projection and view point are
not important

Prefers orthographic
projection and vertical view
point

No special points, dragging is
the same

Mouse near the circle center
makes sharp jumps of
dragged object

Other draggings

Dragging of a direction

Dragging of a direction

• Given are n dials, each with a hand

• Random positions and sizes

Goal

• Interactive rotation of selected dial hand

Implementation of dials

• Flat spheres (Z radius is 20)

• Interactive cone 20 units above each sphere

• Cone not oriented along Z axis, but along Y axis

var c = [random(-300,300),random(-150,150),100*i];
var r = random(30,80);
spheroid(c,[r,r,20]).custom({color:[0,0.5,1]});
cone([c[0],c[1],c[2]+20],r/10,r).custom({
 focus:[0,1,0],
 light:false,
 color:[1,1,1],
 interactive:true});

Interactivity

• Vector focus of the “dragged” objects is set to the mouse
position (x,y)

• This turns the cone towards the mouse

function mouseMove(event)
{
 if (obj)
 {
 var x =...;
 var y = -(...);
 obj.focus = [x-obj.center[0],y-obj.center[1],0];
 }
}

TRY IT

Example-1810 Dials/Example-1810 Dials.html
Example-1810 Dials/Example-1810 Dials.html

Dragging of a height

Example

• Regular pyramid

• Horizontal mouse motion rotates the pyramid (i.e. dragging
base vertex along a circle)

• Vertical mouse motion changes its height (i.e. dragging top
vertex along a vertical segment)

Implementation

• Mouse offset in dx and dy

• They are used to calculate pyramid spin and height

if (obj)
{
 var dx = event.clientX-x;
 var dy = event.clientY-y;

 obj.spin -= dx/100;
 obj.height -= dy/5;
}

Restrictions

• Avoiding mixing of horizontal and vertical mouse motion

• Recognizing only the largest motion

• Height limited to 5 at the bottom (physical considerations) and
40 at the top (aesthetical considerations)

if (Math.abs(dx)>Math.abs(dy))
 obj.spin -= dx/100;
else
 obj.height -= dy/5;

if (obj.height<5) obj.height=5;
if (obj.height>40) obj.height=40;

TRY IT

Example-1811 Dragging a pyramid/Example-1811 Dragging a pyramid.html
Example-1811 Dragging a pyramid/Example-1811 Dragging a pyramid.html

Minigame

Flying 3D crosses

Rules of the game

• 3D crosses are flying

• All are big and red

• Clicking on a cross makes it white and gradually smaller

Goal

• Clicking on all crosses for minimal time

Implementation of a 3D cross

• Three mutually orthogonal cuboids

• Organized in a group, all groups are in an array

• Every group is interactive and red

• Initially every group size is scaled by 2

cross[i] = group([cuboid([0,0,0],[10,2,2]),
 cuboid([0,0,0],[2,10,2]),
 cuboid([0,0,0],[2,2,10])])
 .custom({
 interactive: true,
 color: [1,0,0.2],
 sizes: [2,2,2]});

Additional setting

• Using offset and speed to randomize the objects positions

• Using shrink as a flag whether an object is shrinking

• Property mergeColor makes the whole group unicoloured

• With merge the whole group is made a single object in respect
to objectAtPoint – i.e. the whole group will be selected instead
of individual cuboids

cross[i] = group(...).custom({...,
 offset: random(0,10*Math.PI),
 speed: random(1,2),
 shrink: false});
cross[i].merge();
cross[i].mergeColor();

Mouse events

• Using only pressing a button

• If pressing is over a cross, make it white and set shrink flag

function mouseDown(event)
{
 obj = p.objectAtPoint(...);
 if (obj)
 {
 obj.color = [0.8,0.8,0.8];
 obj.shrink = true;
 }
}

Main animation loop

• Every cross has own time t

• Using time to calculate center, orientation and spin

• When shrinking, the size decreases with a linear combination
between the current size and size 1

t = Suica.time/3*cross[i].speed+cross[i].offset;
cross[i].center = [40*cos(t),40*sin(t),15*cos(1.5*t+i)];
cross[i].focus = [cos(2*t),sin(1.3*t),sin(-1.5*t)];
cross[i].spin = (t-i)*cross[i].speed;
if (cross[i].shrink)
{
 var s = cross[i].sizes[0]*0.9+0.1*1;
 cross[i].sizes = [s,s,s];
}

TRY IT

Example-1812 Flying crosses/Example-1812 Flying crosses.html
Example-1812 Flying crosses/Example-1812 Flying crosses.html

Summary

Bound drag and drop

Restrictions

• Objective – e.g. shape of the trajectory defines the available
drag positions

• Subjective – e.g. some drag positions are avoided due to
aesthetical reasons

Implementation

• Restricting input parameters

• Restricting result coordinates

Dragging along a line

• With a linear combination of two points

• With the closest point

• A line could be straight or circular

Other types

• Dragging non-coordinate values (orientation, spin, height, etc.)

ICT in SES

The end

Comments, questions

