Significance and validity check of the linear regression model

- Regression coefficient significance: It has to be checked if its absolute value is statistically different from the experimental error value;
- Model validity check: Does the values calculated by the model correspond to the experimental values in statistical sense (the well known "calculated/measured" test)

Statistical estimates for significance and validity

- Student's test to check the difference between the regression coefficient value and experimental error value (if both values are statistically equal no regression relationship is at hand);
- Least squares method to assess the regression model validity (adequacy).

General scheme of least squares method

Source	SS	df	MS
Model Residual	557040.125 17878.875	1 199	557040.125 89.843593
Total	574919	200	2874.595

 $F_{calc} = 6200.11$

Validity check by correlation coefficient

In this approach the correlation coefficient between the results of the experimental measurements and the results calculated by the linear regression model

$$y = ax + b$$

is determined.

If high correlation is shown the model is adequate. The lack of correlation indicates non – adequate model (no regression relationship).

Advantages and limitations of regression analysis

- Very useful for assessment of linear relationships (standard curve in analytical chemistry; time trends in environmental chemistry; linear models in physical chemistry; financial models; prognoses, etc.)
- Serious sensitivity to outliers which could compromise the model; possible outcome is to consider the system "before" the appearance of outlying result and "after" that.

Other specificities

- It is advisable to introduce (like in correlation analysis) different levels (ranks) of regression "significant", "average", "weak", insignificant".
- The regression relationship (different from correlation) is rather casual than stochastic relationship.

Analysis of Variance - ANOVA

