

Perl Testing: A Developer’s
Notebook
Ian Langworth

Chromatic
Editor
Tatiana Apandi

Editor
Allison Randal

Copyright © 2011 O'Reilly Media, Inc.

SPECIAL OFFER: Upgrade this ebook with
O’Reilly
Click here for more information on this offer!

Please note that upgrade offers are not available from sample content.

A Note Regarding Supplemental Files
Supplemental files and examples for this book can be found at

http://examples.oreilly.com/9780596100926/. Please use a standard desktop

web browser to access these files, as they may not be accessible from all

ereader devices.

All code files or examples referenced in the book will be available online.

For physical books that ship with an accompanying disc, whenever

possible, we’ve posted all CD/DVD content. Note that while we provide as

much of the media content as we are able via free download, we are

sometimes limited by licensing restrictions. Please direct any questions or

concerns to booktech@oreilly.com.

http://examples.oreilly.com/9780596100926/
mailto:booktech@oreilly.com

The Developer’s Notebook Series
So, you’ve managed to pick this book up. Cool. Really, I’m excited about

that! Of course, you may be wondering why these books have the odd-

looking, college notebook sort of cover. I mean, this is O’Reilly, right?

Where are the animals? And, really, do you need another series? Couldn’t

this just be a cookbook? How about a nutshell, or one of those cool hacks

books that seem to be everywhere? The short answer is that a developer’s

notebook is none of those things—in fact, it’s such an important idea that

we came up with an entirely new look and feel, complete with cover, fonts,

and even some notes in the margin. This is all a result of trying to get

something into your hands you can actually use.

It’s my strong belief that while the nineties were characterized by everyone

wanting to learn everything (Why not? We all had six-figure incomes from

dot-com companies), the new millennium is about information pain. People

don’t have time (or the income) to read through 600-page books, often

learning 200 things, of which only about 4 apply to their current job. It

would be much nicer to just sit near one of the uber-coders and look over

his shoulder, wouldn’t it? To ask the guys that are neck-deep in this stuff

why they chose a particular method, how they performed this one tricky

task, or how they avoided that threading issue when working with piped

streams. The thinking has always been that books can’t serve that particular

need—they can inform, and let you decide, but ultimately a coder’s mind

was something that couldn’t really be captured on a piece of paper.

This series says that assumption is patently wrong—and we aim to prove it.

A Developer’s Notebook is just what it claims to be: the often-frantic

scribbling and notes that a true-blue alpha geek mentally makes when

working with a new language, API, or project. It’s the no-nonsense code

that solves problems, stripped of page-filling commentary that often serves

more as a paperweight than an epiphany. It’s hackery, focused not on what

is nifty or might be fun to do when you’ve got some free time (when’s the

last time that happened?), but on what you need to simply “make it work.”

This isn’t a lecture, folks—it’s a lab. If you want a lot of concept,

architecture, and UML diagrams, I’ll happily and proudly point you to our

animal and nutshell books. If you want every answer to every problem

under the sun, our omnibus cookbooks are killer. And if you are into arcane

and often quirky uses of technology, hacks books simply rock. But if you’re

a coder, down to your core, and you just want to get on with it, then you

want a Developer’s Notebook. Coffee stains and all, this is from the mind

of a developer to yours, barely even cleaned up enough for print. I hope you

enjoy it...we sure had a good time writing them.

Notebooks Are...
Example-driven guides

As you’ll see in the "Organization" section, developer’s notebooks are

built entirely around example code. You’ll see code on nearly every

page, and it’s code that does something— not trivial “Hello World!”

programs that aren’t worth more than the paper they’re printed on.

Aimed at developers

Ever read a book that seems to be aimed at pointy-haired bosses, filled

with buzzwords, and feels more like a marketing manifesto than a

programming text? We have too—and these books are the antithesis of

that. In fact, a good notebook is incomprehensible to someone who

can’t program (don’t say we didn’t warn you!), and that’s just the way

it’s supposed to be. But for developers...it’s as good as it gets.

Actually enjoyable to work through

Do you really have time to sit around reading something that isn’t any

fun? If you do, then maybe you’re into thousand-page language

references—but if you’re like the rest of us, notebooks are a much better

fit. Practical code samples, terse dialogue centered around practical

examples, and even some humor here and there—these are the

ingredients of a good developer’s notebook.

About doing, not talking about doing

If you want to read a book late at night without a computer nearby, these

books might not be that useful. The intent is that you’re coding as you

go along, knee deep in bytecode. For that reason, notebooks talk code,

code, code. Fire up your editor before digging in.

Notebooks Aren’t...
Lectures

We don’t let just anyone write a developer’s notebook—you’ve got to

be a bona fide programmer, and preferably one who stays up a little too

late coding. While full-time writers, academics, and theorists are great

in some areas, these books are about programming in the trenches, and

are filled with instruction, not lecture.

Filled with conceptual drawings and class hierarchies

This isn’t a nutshell (there, we said it). You won’t find 100-page indices

with every method listed, and you won’t see full-page UML diagrams

with methods, inheritance trees, and flow charts. What you will find is

page after page of source code. Are you starting to sense a recurring

theme?

Long on explanation, light on application

It seems that many programming books these days have three, four, or

more chapters before you even see any working code. I’m not sure who

has authors convinced that it’s good to keep a reader waiting this long,

but it’s not anybody working on this series. We believe that if you’re not

coding within 10 pages, something’s wrong. These books are also

chock-full of practical application, taking you from an example in a

book to putting things to work on your job, as quickly as possible.

Organization
Developer’s Notebooks try to communicate different information than most

books, and as a result, are organized differently. They do indeed have

chapters, but that’s about as far as the similarity between a notebook and a

traditional programming book goes. First, you’ll find that all the headings in

each chapter are organized around a specific task. You’ll note that we said

task, not concept. That’s one of the important things to get about these

books—they are first and foremost about doing something. Each of these

headings represents a single lab. A lab is just what it sounds like—steps to

accomplish a specific goal. In fact, that’s the first heading you’ll see under

each lab: “How do I do that?” This is the central question of each lab, and

you’ll find lots of down-and-dirty code and detail in these sections.

Some labs have some things not to do (ever played around with potassium

in high school chemistry?), helping you avoid common pitfalls. Some labs

give you a good reason for caring about the topic in the first place; we call

this the “Why do I care?” section, for obvious reasons. For those times

when code samples don’t clearly communicate what’s going on, you’ll find

a “What just happened” section. It’s in these sections that you’ll find

concepts and theory—but even then, they are tightly focused on the task at

hand, not explanation for the sake of page count. Finally, many labs offer

alternatives, and address common questions about different approaches to

similar problems. These are the “What about...” sections, which will help

give each task some context within the programming big picture.

And one last thing—on many pages, you’ll find notes scrawled in the

margins of the page. These aren’t for decoration; they contain tips, tricks,

insights from the developers of a product, and sometimes even a little

humor, just to keep you going. These notes represent part of the overall

communication flow—getting you as close to reading the mind of the

developer-author as we can. Hopefully they’ll get you that much closer to

feeling like you are indeed learning from a master.

And most of all, remember—these books are...

All Lab, No Lecture

—Brett McLaughlin, Series Creator

Preface
Is there any sexier topic in software development than software testing, at

least besides game programming, 3D graphics, audio, high-performance

clustering, cool web sites, and so on?

Okay, so software testing is low on the list. That’s unfortunate, because

good software testing can increase your productivity, improve your designs,

raise your quality, ease your maintenance burdens, and help to satisfy your

customers, coworkers, and managers. It’s no surprise that the agile

development techniques place such an emphasis on automated software

testing—when it clicks for you and you understand it, you’ll wonder how

you ever wrote software without it.

Perl has a bit of a reputation for being hackish and unserious. It’s certainly

good for doing quick and dirty jobs quickly and dirtily. However, if you

approach it with discipline, you’ll find that it’s suitable for big, serious

projects. You probably already know this. You may not know how to apply

the discipline, though. That’s where this book can help.

Perl has a strong history of automated tests. The earliest release of Perl 1.0

the authors know of included a comprehensive test suite. It’s only improved

from there. The CPAN, a huge archive of freely available and reusable Perl

code, exerts strong social pressure on contributors to write and maintain

good test suites for their code. It also includes dozens of useful testing

modules to make testing possible, or even easy.

Of course, your main job probably isn’t all Perl all the time. It may be just

one of a handful of good tools you use. That’s fine. Learning how Perl’s test

tools work and how to put them together to solve all sorts of previously

intractable problems can make you a better programmer in general. Besides,

it’s easy to use the Perl tools described here (and others that the future will

bring) to handle all sorts of testing problems you encounter, even in other

languages.

You don’t have to be a die-hard free and open source software developer

who lives, breathes, and dreams Perl to use this book. You just have to want

to do your job a little bit better.

What This Book Covers
The nine chapters of this book cover testing in Perl, starting as if you’ve

never written a test before and ending by exploring some of the testing

problems you’ll encounter in the real world. The authors expect you to

know Perl already well enough to install and use Perl modules effectively in

your own programs. You should have a decent understanding of Perl data

structures and object-oriented programming. You need to have Perl newer

than 5.6.0 installed, but the authors recommend at least Perl 5.6.1 and

suggest that you consider upgrading to the latest version of the stable 5.8

series.

As for the chapters themselves, they discuss:

Writing basic tests

This chapter explains everything you need to start writing and running

tests, including how to install testing modules, how to understand test

results, and the basic test functions you’ll use in every test.

Improving your tests

This chapter builds on the previous chapter, demonstrating further test

techniques and modules. Once you’re familiar with writing tests, you’ll

encounter some common tasks and troubles. Here’s how to solve them.

Organizing and running tests well

This chapter shows how to take advantage of the basic testing tools to

customize them for your environment and projects. In particular, it

shows how to write your own testing libraries and harnesses.

Bundling tests and code into projects

Tests are just code, and all of the normal rules of disciplined coding

apply. This chapter covers some of the issues you’ll face when you want

to distribute your project, especially the issues of non-code portions of

your project.

Testing hard-to-test code

Unit testing seems easy in theory, but complex projects have complex

interactions that might seem impossibly untestable at first. This chapter

claims otherwise. It recommends another way of thinking that allows

you to substitute testable code—under your control—for code that

otherwise looks untestable.

Testing databases and their data

Many programs interact with databases: relational, object, and flat file.

While these normally seem outside the purview of what you can test

from Perl, there are simple and effective techniques to verifying that

your code does what it should. This chapter describes them.

Testing web sites and web projects

Layered applications, with display, logic, and data pieces, also seem

difficult to test, especially if they’re not really layered after all. This

chapter explores an alternative web application design strategy that

makes projects easier to maintain and easier to test, too, as well as how

to test them.

Unit testing

Traditional Perl testing differs from xUnit-style testing in the way it

organizes, structures, and runs tests. You can have the best of both

worlds, though. This chapter discusses a Perl testing framework that

allows good code reuse within object-oriented project tests and yet

works within the familiar Perl testing libraries.

Testing non-Perl and non-modules

There’s a whole world outside of Perl. Now that you know the power,

flexibility, and ease of automated testing with Perl, this chapter suggests

a few ways to use everything you’ve learned to test other projects

written in other languages. Go forth and improve software quality

worldwide.

Conventions Used in This Book
This books uses the following typographical conventions:

Italic

Used for new terms, URLs, email addresses, filenames, file extensions,

pathnames, directories, and Unix utilities.

Constant width

Used for program listings, classes, methods, variables, keywords, and

the output of commands.

Constant width bold

Used to show commands or other text that the user should type literally

and to highlight sections of code examples.

Constant width italic

Used to show text that should be replaced with user-supplied values.

Handwriting font

Used for tips, suggestions, or general notes.

Using Code Examples
This book is here to help you get your job done. In general, you may use the

code in this book in your programs and documentation. You do not need to

contact us for permission unless you’re reproducing a significant portion of

the code. For example, writing a program that uses several chunks of code

from this book does not require permission. Selling or distributing a CD-

ROM of examples from O’Reilly books does require permission.

Answering a question by citing this book and quoting example code does

not require permission. Incorporating a significant amount of example code

from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually

includes the title, author, publisher, and ISBN. For example: "Perl Testing:
A Developer’s Notebook, by Ian Langworth and chromatic. Copyright 2005

O’Reilly Media, Inc., 0-596-10092-2.”

If you feel your use of code examples falls outside fair use or the

permission given above, feel free to contact us at permissions@oreilly.com.

mailto:permissions@oreilly.com

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite

technology book, it means the book is available online through the O’Reilly

Network Safari Bookshelf.

Safari offers a solution that’s better than e-books. It’s a virtual library that

lets you easily search thousands of top technology books, cut and paste

code samples, download chapters, and find quick answers when you need

the most accurate, current information. Try it for free at

http://safari.oreilly.com.

http://safari.oreilly.com/

Comments and Questions
Please address comments and questions concerning this book to the

publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)

(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any

additional information. You can access this page at:

 http://www.oreilly.com/catalog/perltestingadn

To comment or ask technical questions about this book, send email to:

 bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and

the O’Reilly Network, see our web site at http://www.oreilly.com.

The Perl QA project has a web site and mailing list devoted to discussing

and improving software testing and in Perl. See the web site at

http://qa.perl.org/ for information on joining the list as well as links to other

testing modules, related projects, and articles and presentations on Perl and

testing.

http://www.oreilly.com/
http://qa.perl.org/

Acknowledgments
The authors thank their editor, Allison Randal, for finding the right format

for this book, for taking care of messy little details, and for weighing in

with editorial advice when necessary. The authors also thank everyone in

O’Reilly’s production, marketing, tools, and PR groups who put this book

in the hands of people who need it.

The authors also thank a bevy of technical reviewers for thoughtful

suggestions, without which the book would be much poorer. In alphabetical

order, they are David Adler, Ann Barcomb, Tony Bowden, Shawn Boyette,

Jim Brandt, Mike Burns, Ben Evans, Shlomi Fish, Adrian Howard, Paul

Johnson, James Keenan, Pete Krawczyk, Christopher Laco, Andy Lester,

Pete Markowsky, Tom McTighe, Steve Peters, Curtis Poe, Steven

Schubiger, Michael Schwern, Ricardo Signes, Brett Warden, and Geoffrey

Young. Any remaining errors are the fault of the authors, or perhaps space

aliens.

Finally, the authors thank everyone whose work has gone into the testing

strategies and modules described here. Everyone’s better for it.

Ian Langworth
I’d like to thank brian d foy for noticing my Perl testing quick-reference

card and his initial suggestion to get the ball rolling.

Thanks to the terrific faculty and staff at the College of Computer and

Information Science at Northeastern University—especially the CCIS

Systems Group folks and their volunteer group, the Crew. They have

provided me with an amazing community over the years, to which I owe so

much. Special thanks goes to Professor Richard Rasala, who mentored me

for three months in this project’s early stages.

Thanks goes to Andy for all of his help and to Allison for letting this

happen. Allison also set me up with a brilliant coauthor, whose grasp of the

language amazes me to no end. This book wouldn’t be nearly as good as it

is without chromatic’s tremendous writing prowess.

Thanks to all of my great friends (too many to list here), my wonderful

parents, and to Emily. These people have been wonderfully supportive and

deserve an immense amount of credit for having to put up with me

regularly.

chromatic
Thanks to Allison for suggesting I work on this book and to Ian for coming

up with the idea and accepting a coauthor. Thanks to everyone at O’Reilly

for a fantastic day job. Thanks also to my friends who celebrated when I did

and commiserated when I complained, especially the U of P bunch and

Mel, Esther, Kate, and Eva. Apologies and love go to my family and most

of all to my parents, Floyd and Annette, who know full well that I learned

about testing things very early. At least now it has some productive value.

Chapter 1. Beginning Testing
You’ve heard about the benefits of testing. You know that it can improve

your code’s reliability and maintainability as well as your development

processes. You may even know about the wide range of available modules

and idioms that Perl offers for testing Perl and non-Perl programs. In short,

you may know everything except where to start.

The labs in this chapter walk through the most basic steps of running and

writing automated tests with Perl. By the end of the chapter, you’ll know

how to start and continue testing, how Perl’s testing libraries work, and

where to find more libraries to ease your workload.

Installing Test Modules
One of Perl’s greatest strengths is the CPAN, an archive of thousands of

reusuable code libraries—generally called modules—for almost any

programming problem anyone has ever solved with Perl. This includes

writing and running tests. Before you can use these modules, however, you

must install them. Fortunately, Perl makes this easy.

How do I do that?
The best way to install modules from the CPAN is through a packaging

system that can handle the details of finding, downloading, building, and

installing the modules and their dependencies.

Through the CPAN shell
On Unix-like platforms (including Mac OS X) as well as on Windows

platforms if you have a C compiler available, the easiest way to install

modules is by using the CPAN module that comes with Perl. To install a new

version of the Test::Simple distribution, launch the CPAN shell with the

cpan script:

 % cpan
 cpan shell -- CPAN exploration and modules installation
(v1.7601)
 ReadLine support enabled

 cpan> install Test::Simple

 Running install for module Test::Simple
 Running make for M/MS/MSCHWERN/Test-Simple-0.54.tar.gz

 <...>

 Appending installation info to /usr/lib/perl5/5.8.6/powerpc-
linux/perllocal.pod
 /usr/bin/make install UNINST=1 -- OK

NOTE
You can also run the CPAN shell manually with perl-MCPAN-e shell.

If Test::Simple had any dependencies (it doesn’t), the shell would have

detected them and tried to install them first.

If you haven’t used the CPAN module before, it will prompt you for all sorts

of information about your machine and network configuration as well as

your installation preferences. Usually the defaults are fine.

Through PPM
By far, most Windows Perl installations use ActiveState’s Active Perl

distribution (http://www.activestate.com/Products/ActivePerl/), which

includes the ppm utility to download, configure, build, and install modules.

With ActivePerl installed, open a console window and type:

 C:\>PPM
 PPM> install Test-Simple

NOTE
ActivePerl also has distributions for Linux and Solaris, so these instructions also work there.

If the configuration is correct, ppm will download and install the latest

Test::Simple distribution from ActiveState’s repository.

If the module that you want isn’t in the repository at all or if the version in

the repository is older than you like, you have a few options.

First, you can search alternate repositories. See PodMaster’s list of ppm
repositories at

http://crazyinsomniac.perlmonk.org/perl/misc/Repositories.pm. For

example, to use dada’s Win32 repository permanently, use the set

repository command within ppm:

http://www.activestate.com/Products/ActivePerl/
http://crazyinsomniac.perlmonk.org/perl/misc/Repositories.pm

 C:\>PPM
 PPM> set repository dada http://dada.perl.it/PPM
 PPM> set save

By hand
If you want to install a pure-Perl module or are working on a platform that

has an appropriate compiler, you can download and install the module by

hand. First, find the appropriate module—perhaps by browsing

http://search.cpan.org/. Then download the file and extract it to its own

directory:

 $ tar xvzf Test-Simple-0.54.tar.gz
 Test-Simple-0.54/
 <...>

NOTE
To set up a compilation environment for Perl on Windows, consult the README.win32 file that
ships with Perl.

Run the Makefile.PL program, and then issue the standard commands to

build and test the module:

 $ perl Makefile.PL
 Checking if your kit is complete...
 Looks good
 Writing Makefile for Test::Simple
 $ make
 cp lib/Test/Builder.pm blib/lib/Test/Builder.pm
 cp lib/Test/Simple.pm blib/lib/Test/Simple.pm
 $ make test

NOTE
Be sure to download the file marked This Release, not the Latest Dev. Release, unless you plan to
help develop the code.

If all of the tests pass, great! Otherwise, do what you can to figure out what

failed, why, and if it will hurt you. (See "Running Tests" and "Interpreting

Test Results,” later in this chapter, for more information.) Finally, install the

module by running make install (as root, if you’re installing the module

system-wide).

Makefile.PL uses a module called ExtUtils::MakeMaker to configure and

install other modules. Some modules use Module::Build instead of

http://search.cpan.org/

ExtUtils::MakeMaker. There are two main differences from the installation

standpoint. First, they require you to have Module::Build installed. Second,

the installation commands are instead:

 $ perl Build.PL
 $ perl Build
 $ perl Build test
 # perl Build install

NOTE
Unix users can use ./Build instead of perl Build in the instructions.

Otherwise, they work almost identically.

Windows users may need to install Microsoft’s nmake to install modules by

hand. Where Unix users type make, use the nmake command instead: nmake,

nmake test, and nmake install.

NOTE
Consult the README.win32 file from the Perl source code distribution for links to nmake.exe .

What about...
Q: How do I know the name to type when installing modules through

PPM? I tried install Test-More, but it couldn’t find it!

A: Type the name of the distribution, not the module within the distribution.

To find the name of the distribution, search http://search.cpan.org/ for the

name of the module that you want. In this example, Test::More is part of

the Test-Simple distribution. Remove the version and use that name within

PPM.

Q: I’m not an administrator on the machine, or I don’t want to install the

modules for everyone. How can I install a module to a specific directory?

A: Set the PREFIX appropriately when installing the module. For example, a

PREFIX of ~/perl/lib will install these modules to that directory (at least on

Unix-like machines). Then set the PERL5LIB environment variable to point

there or remember to use the lib pragma to add that directory to @INC in all

programs in which you want to use your locally installed modules.

http://search.cpan.org/

NOTE
See perlfaq8 to learn more about keeping your own module directory.

If you build the module by hand, run Makefile.PL like this:

 $ perl Makefile.PL PREFIX=~/perl/lib

NOTE
MakeMaker 6.26 release will support the INSTALLBASE parameter; use that instead of PREFIX.

If you use CPAN, configure it to install modules to a directory under your

control. Launch the CPAN shell with your own user account and follow the

configuration questions. When it prompts for the PREFIX:

 Every Makefile.PL is run by perl in a separate process.
Likewise we
 run 'make' and 'make install' in processes. If you have any
 parameters (e.g. PREFIX, LIB, UNINST or the like) you want to
pass
 to the calls, please specify them here.

 If you don't understand this question, just press ENTER.

 Parameters for the 'perl Makefile.PL' command?
 Typical frequently used settings:

 PREFIX=~/perl non-root users (please see manual for
more hints)

 Your choice: []

add a prefix to a directory where you’d like to store your own modules.

If the module uses Module::Build, pass the installbase parameter instead:

 $ perl Build.PL --installbase=~/perl

See the documentation for ExtUtils::MakeMaker, CPAN, and Module::Build

for more details.

Running Tests
Before you can gain any benefit from writing tests, you must be able to run

them. Fortunately, there are several ways to do this, depending on what you

need to know.

How do I do that?
To see real tests in action, download the latest version of Test::Harness

(see http://search.cpan.org/dist/Test-Harness) from the CPAN and extract it

to its own directory. Change to this directory and build the module as usual

(see "Installing Test Modules,” earlier in this chapter). To run all of the tests

at once, type make test:
 $ make test
 PERL_DL_NONLAZY=1 /usr/bin/perl5.8.6 "-
MExtUtils::Command::MM" "-e" \
 "test_harness(0, 'blib/lib', 'blib/arch')" t/*.t
 t/00compile.........ok 1/5# Testing Test::Harness 2.46
 t/00compile.........ok
 t/assert............ok
 t/base..............ok
 t/callback..........ok
 t/harness...........ok
 t/inc_taint.........ok
 t/nonumbers.........ok
 t/ok................ok
 t/pod...............ok
 t/prove-globbing....ok
 t/prove-switches....ok
 t/strap-analyze.....ok
 t/strap.............ok
 t/test-harness......ok
 56/208 skipped: various reasons
 All tests successful, 56 subtests skipped.
 Files=14, Tests=551, 6 wallclock secs (4.52 cusr + 0.97
csys = 5.49 CPU)

What just happened?
make test is the third step of nearly every Perl module installation. This

command runs all of the test files it can find through Test::Harness, which

summarizes and reports the results. It also takes care of setting the paths

appropriately for as-yet-uninstalled modules.

http://search.cpan.org/dist/Test-Harness

What about...
Q: How do I run tests for distributions that don’t use Makefile.PL?

A: make test comes from ExtUtils::MakeMaker, an old and venerable

module. Module::Build is easier to use in some cases. If there’s a Build.PL
file, instead use the commands perl Build.PL, perl Build, and perl Build

test. Everything will behave as described here.

Q: How do I run tests individually?

A: Sometimes you don’t want to run everything through make test, as it

runs all of the tests for a distribution in a specific order. If you want to run a

few tests individually, use prove instead. It runs the test files you pass as

command-line arguments, and then summarizes and prints the results.

NOTE
If you don’t have prove installed, you’re using an old version of Test:: Harness. Use bin/ prove
instead. Then upgrade.

 $ prove t/strap*.t
 t/strap-analyze....ok
 t/strap............ok
 All tests successful.
 Files=2, Tests=284, 1 wallclock secs (0.66 cusr + 0.14
csys = 0.80
 CPU)

If you want the raw details, not just a summary, use prove’s verbose (-v)

flag:

 $ prove -v t/assert.t
 t/assert....1..7
 ok 1 - use Test::Harness::Assert;
 ok 2 - assert() exported
 ok 3 - assert(FALSE) causes death
 ok 4 - with the right message
 ok 5 - assert(TRUE) does nothing
 ok 6 - assert(FALSE, NAME)
 ok 7 - has the name
 ok
 All tests successful.
 Files=1, Tests=7, 0 wallclock secs (0.06 cusr + 0.01 csys
= 0.07
 CPU)

This flag prevents prove from eating the results. Instead, it prints them

directly along with a short summary. This is very handy for development

and debugging (see "Interpreting Test Results,” later in this chapter).

Q: How do I run tests individually without prove?

A: You can run most test files manually; they’re normally just Perl files.

 $ perl t/00compile.t
 1..5
 ok 1 - use Test::Harness;
 # Testing Test::Harness 2.42
 ok 2 - use Test::Harness::Straps;
 ok 3 - use Test::Harness::Iterator;
 ok 4 - use Test::Harness::Assert;
 ok 5 - use Test::Harness;

Oops! This ran the test against Test::Harness 2.42, the installed version,

instead of Version 2.46, the new version. All of the other solutions set Perl’s

@INC path correctly. When running tests manually, use the blib module to

pick up the modules as built by make or perl Build:

NOTE
Confused about @INC and why it matters? See perldoc perlvar for enlightenment.

 $ perl -Mblib t/00compile.t
 1..5
 ok 1 - use Test::Harness;
 # Testing Test::Harness 2.46
 ok 2 - use Test::Harness::Straps;
 ok 3 - use Test::Harness::Iterator;
 ok 4 - use Test::Harness::Assert;
 ok 5 - use Test::Harness;

The -M switch causes Perl to load the given module just as if the program

file contained a use blib; line.

The TEST_FILES argument to make_test can simplify this:

NOTE
TEST_FILE Scan also take a file pattern, such as TEST_FILES=t/ strap*.t.

 $ make test TEST_FILES=t/00compile.t
 t/00compile....ok 1/5# Testing Test::Harness 2.46
 t/00compile....ok

 All tests successful.
 Files=1, Tests=5, 0 wallclock secs (0.13 cusr + 0.02 csys
= 0.15
 CPU)

For verbose output, add TEST_VERBOSE=1.

Interpreting Test Results
Perl has a wealth of good testing modules that interoperate smoothly

through a common protocol (the Test Anything Protocol, or TAP) and

common libraries (Test::Builder). You’ll probably never have to write

your own testing protocol, but understanding TAP will help you interpret

your test results and write better tests.

NOTE
All of the test modules in this book produce TAP output. Test:: Harness interprets that output.
Think of it as a minilanguage about test successes and failures.

How do I do that?
Save the following program to sample_output.pl:

 #!perl

 print <<END_HERE;
 1..9
 ok 1
 not ok 2
 # Failed test (t/sample_output.t at line 10)
 # got: '2'
 # expected: '4'
 ok 3
 ok 4 - this is test 4
 not ok 5 - test 5 should look good too
 not ok 6 # TODO fix test 6
 # I haven't had time add the feature for test 6
 ok 7 # skip these tests never pass in examples
 ok 8 # skip these tests never pass in examples
 ok 9 # skip these tests never pass in examples
 END_HERE

NOTE
Using Windows and seeing an error about END_HERE? Add a newline to the end of
sample_output. pl, then read perldoc perlfaq8.

Now run it through prove (see "Running Tests,” earlier in this chapter):

 $ prove sample_output.pl
 sample_output....FAILED tests 2, 5

 Failed 2/9 tests, 77.789 okay (less 3 skipped tests: 4
okay, 44.44%)
 Failed Test Stat Wstat Total Fail Failed List of
Failed

 sample_output.pl 9 2 22.22% 2 5
 3 subtests skipped.
 Failed 1/1 test scripts, 0.00% okay. 2/9 subtests failed,
77.79% okay.

What just happened?
prove interpreted the output of the script as it would the output of a real test.

In fact, there’s no effective difference—a real test might produce that exact

output.

The lines of the test correspond closely to the results. The first line of the

output is the test plan. In this case, it tells the harness to plan to run 9 tests.

The second line of the report shows that 9 tests ran, but two failed: tests 2

and 5, both of which start with not ok.

The report also mentions three skipped tests. These are tests 7 through 9, all

of which contain the text # skip. They count as successes, not failures. (See

"Skipping Tests" in Chapter 2 to learn why.)

That leaves one curious line, test 6. It starts with not ok, but it does not

count as a failure because of the text # TODO. The test author expected this

test to fail but left it in and marked it appropriately. (See "Marking Tests as

TODO" in Chapter 2.)

The test harness ignored all of the rest of the output, which consists of

developer diagnostics. When developing, it’s often useful to look at the test

output in its entirety, whether by using prove -v or running the tests directly

through perl (see "Running Tests,” earlier in this chapter). This prevents

the harness from suppressing the diagnostic output, as found with the

second test in the sample output.

What about...
Q: What happens when the actual number of tests is different than

expected?

A: Running the wrong number of tests counts as a failure. Save the

following test as too_few_tests.t:

 use Test::More tests => 3;

 pass('one test');
 pass('two tests');

Run it with prove:

 $ prove too_few_tests.t
 too_few_tests....ok 2/3# Looks like you planned 3 tests but
only ran 2.
 too_few_tests....dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 3
 Failed 1/3 tests, 66.67% okay
 Failed Test Stat Wstat Total Fail Failed List of Failed

too_few_tests.t 1 256 3 2 66.67% 3
 Failed 1/1 test scripts, 0.00% okay. 1/3 subtests failed,
66.67% okay.

Test::More complained about the mismatch between the test plan and the

number of tests that actually ran. The same goes for running too many tests.

Save the following code as too_many_tests.t:

 use Test::More tests => 2;

 pass('one test');
 pass('two tests');
 pass('three tests');

Run it with prove:

 $ prove -v too_many_tests.t
 too_many_tests....ok 3/2# Looks like you planned 2 tests but
ran 1 extra.
 too_many_tests....dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 3
 Failed 1/2 tests, 50.00% okay
 Failed Test Stat Wstat Total Fail Failed List of
Failed

too_many_tests.t 1 256 2 1 50.00% 3
 Failed 1/1 test scripts, 0.00% okay. -1/2 subtests failed,
150.00% okay.

This time, the harness interpreted the presence of the third test as a failure

and reported it as such. Again, Test::More warned about the mismatch.

Writing Your First Test
This lab introduces the most basic features of Test::Simple, the simplest

testing module. You’ll see how to write your own test for a simple “Hello,

world!"-style program.

How do I do that?
Open your favorite text editor and create a file called hello.t. Enter the

following code:

 #!perl

 use strict;
 use warnings;

 use Test::Simple tests => 1;

 sub hello_world
 {
 return "Hello, world!";
 }

 ok(hello_world() eq "Hello, world!");

Save it. Now you have a simple Perl test file. Run it from the command line

with prove:

 $ prove hello.t

You’ll see the following output:

 hello....ok
 All tests successful.
 Files=1, Tests=1, 0 wallclock secs (0.09 cusr + 0.00 csys
= 0.09 CPU)

What just happened?
hello.t looks like a normal Perl program; it uses a couple of pragmas to

catch misbehavior as well as the Test::Simple module. It defines a simple

subroutine. There’s no special syntax a decent Perl programmer doesn’t

already know.

The first potential twist is the use of Test::Simple. By convention, all test

files need a plan to declare how many tests you expect to run. If you run the

test file with perl and not prove, you’ll notice that the plan output comes

before the test output:

 $ perl hello.t
 1..1
 ok 1

The other interesting piece is the ok() subroutine. It comes from

Test::Simple and is the module’s only export. ok() is very, very simple. It

reports a passed or a failed test, depending on the truth of its first argument.

In the example, if whatever hello_world() returns is equal to the string

Hello, world!, ok() will report that the test has passed.

NOTE
Anything that can go in an if statement is fair game for ok().

As the output shows, there’s one test in the file, and it passed.

Congratulations!

What about...
NOTE

In some cases, the number of tests you run is important, so providing a real plan is a good habit to
cultivate.

Q: How do I avoid changing the plan number every time I add a test?

A: Writing 'no_plan' on the use line lets Test::Simple know that you’re

playing it by ear. In this case, it’ll keep its own count of tests and report that

you ran as many as you ran.

 #!perl

 use strict;
 use warnings;

 use Test::Simple 'no_plan';

 sub hello_world
 {

 return "Hello, world!";
 }

 ok(hello_world() eq "Hello, world!");

When you declare no_plan, the test plan comes after the test output.

 $ perl hello.t
 ok 1
 1..1

This is very handy for developing, when you don’t know how many tests

you’ll add. Having a plan is a nice sanity check against unexpected

occurrences, though, so consider switching back to using a plan when you

finish adding a batch of tests.

Q: How do I make it easier to track down which tests are failing?

A: When there are multiple tests in a file and some of them fail,

descriptions help to explain what should have happened. Hopefully that will

help you track down why the tests failed. It’s easy to add a description; just

change the ok line.

 ok(hello_world() eq "Hello, world!",
 'hello_world() output should be sane');

NOTE
Having tests is good. Having tests that make sense is even better.

You should see the same results as before when running it through prove.

Running it with the verbose flag will show the test description:

 $ prove -v hello.t
 1..1
 ok 1 - hello_world() output should be sane

Q: How do I make more detailed comparisons?

A: Don’t worry; though you can define an entire test suite in terms of ok(),

dozens of powerful and freely available testing modules work together

nicely to provide much more powerful testing functions. That list starts with

the aptly named Test::More.

Loading Modules
Most of the Perl testing libraries assume that you use them to test Perl

modules. Modules are the building blocks of larger Perl programs and well-

designed code uses them appropriately. Loading modules for testing seems

simple, but it has two complications: how do you know you’ve loaded the

right version of the module you want to test, and how do you know that

you’ve loaded it successfully?

This lab explains how to test both questions, with a little help from

Test::More.

How do I do that?
Imagine that you’re developing a module to analyze sentences to prove that

so-called professional writers have poor grammar skills. You’ve started by

writing a module named AnalyzeSentence that performs some basic word

counting. Save the following code in your library directory as

AnalyzeSentence.pm:

NOTE
Perl is popular among linguists, so someone somewhere may be counting misplaced commas in
Perl books.

 package AnalyzeSentence;

 use strict;
 use warnings;

 use base 'Exporter';

 our $WORD_SEPARATOR = qr/\s+/;
 our @EXPORT_OK = qw($WORD_SEPARATOR count_words words
);

 sub words
 {
 my $sentence = shift;
 return split($WORD_SEPARATOR, $sentence);
 }

 sub count_words

 {
 my $sentence = shift;
 return scalar words($sentence);
 }

 1;

Besides checking that words() and count_words() do the right thing, a good

test should test that the module loads and imports the two subroutines

correctly. Save the following test file as analyze_sentence.t:

 #!perl

 use strict;
 use warnings;

 use Test::More tests => 5;

 my @subs = qw(words count_words);

 use_ok('AnalyzeSentence', @subs);
 can_ok(_ _PACKAGE_ _, 'words');
 can_ok(_ _PACKAGE_ _, 'count_words');

 my $sentence =
 'Queen Esther, ruler of the Frog-Human Alliance, briskly
devours a
 monumental ice cream sundae in her honor.';

 my @words = words($sentence);
 ok(@words = = 17, 'words() should return all words in
sentence');

 $sentence = 'Rampaging ideas flutter greedily.';
 my $count = count_words($sentence);

 ok($count = = 4, 'count_words() should handle simple
sentences');

Run it with prove:

 $ prove
 analyze_sentence.t
 analyze_sentence....ok
 All tests successful.
 Files=1, Tests=5, 0 wallclock secs (0.08 cusr + 0.01 csys
= 0.09 CPU)

What just happened?

Instead of starting with Test::Simple, the test file uses Test::More. As the

name suggests, Test::More does everything that Test::Simple does—and

more! In particular, it provides the use_ok() and can_ok() functions shown

in the test file.

use_ok() takes the name of a module to load, AnalyzeSentence in this case,

and an optional list of symbols to pass to the module’s import() method. It

attempts to load the module and import the symbols and passes or fails a

test based on the results. It’s the test equivalent of writing:

 use AnalyzeSentence qw(words count_words);

NOTE
See perldoc perlmod and perldoc -f use to learn more about import().

can_ok() is the test equivalent of the can() method. The tests use it here to

see if the module has exported words() and count_words() functions into

the current namespace. These tests aren’t entirely necessary, as the ok()

functions later in the file will fail if the functions are missing, but the import

tests can fail for only two reasons: either the import has failed or someone

mistyped their names in the test file.

NOTE
See perldoc UNIVERSAL to learn more about can().

What about...
Q: I don’t want to use use; I want to use require. Can I do that? How?

A: See the Test::More documentation for require_ok().

Q: What if I need to import symbols from the module as it loads?

A: If the test file depends on variables defined in the module being tested,

for example, wrap the use_ok() line in a BEGIN block. Consider adding tests

for the behavior of $WORD_SEPARATOR. Modify the use_ok() line and add the

following lines to the end of analyze_sentence.t:

 use_ok('AnalyzeSentence', @subs, '$WORD_SEPARATOR') or
exit;

 ...

 $WORD_SEPARATOR = qr/(?:\s|-)+/;
 @words = words($sentence);
 ok(@words = = 18, '... respecting $WORD_SEPARATOR, if set'
);

Run the test:

 $ prove t/analyze_sentence.t
 t/analyze_sentence....Global symbol "$WORD_SEPARATOR"
requires explicit
 package name at t/analyze_sentence.t line 28.
 Execution of t/analyze_sentence.t aborted due to compilation
errors.
 # Looks like your test died before it could output anything.
 t/analyze_sentence....dubious
 Test returned status 255 (wstat 65280, 0xff00)
 FAILED--1 test script could be run, alas—no output
ever seen

With the strict pragma enabled, when Perl reaches the last lines of the test

file in its compile stage, it hasn’t seen the variable named $WORD_SEPARATOR

yet. Only when it runs the use_ok() line at runtime will it import the

variable.

Change the use_ok() line once more:

 BEGIN { use_ok('AnalyzeSentence', @subs,
'$WORD_SEPARATOR') or exit;}

NOTE
See perldoc perlmod for more information about BEGIN and compile time.

Then run the test again:

 $ prove t/analyze_sentence.t
 t/analyze_sentence....ok
 All tests successful.
 Files=1, Tests=6, 0 wallclock secs (0.09 cusr + 0.00 csys
= 0.09
 CPU)

Q: What if Perl can’t find AnalyzeSentence or it fails to compile?

A: If there’s a syntax error somewhere in the module, some of your tests

will pass and others will fail mysteriously. The successes and failures

depend on what Perl has already compiled by the time it reaches the error.

It’s difficult to recover from this kind of failure.

The best thing you can do may be to quit the test altogether:

 use_ok('AnalyzeSentence') or exit;

NOTE
Some testers prefer to use die() with an informative error message.

If you’ve specified a plan, Test::Harness will note the mismatch between

the number of tests run (probably one) and the number of tests expected.

Either way, it’s much easier to see the compilation failure if it’s the last

failure reported.

Improving Test Comparisons
ok() may be the basis of all testing, but it can be inconvenient to have to

reduce every test in your system to a single conditional expression.

Fortunately, Test::More provides several other testing functions that can

make your work easier. You’ll likely end up using these functions more

often than ok().

This lab demonstrates how to use the most common testing functions found

in Test::More.

How do I do that?
The following listing tests a class named Greeter, which takes the name and

age of a person and allows her to greet other people. Save this code as

greeter.t:

 #!perl

 use strict;
 use warnings;

 use Test::More tests => 4;

 use_ok('Greeter') or exit;

 my $greeter = Greeter->new(name => 'Emily', age => 21);
 isa_ok($greeter, 'Greeter');

 is($greeter->age(), 21,
 'age() should return age for object');
 like($greeter->greet(), qr/Hello, .+ is Emily!/,
 'greet() should include object name');

NOTE
The examples in "Writing Your First Test,” earlier in this chapter, will work the same way if you
substitute Test::More for Test::Simple; Test::More is a superset of Test:: Simple.

Now save the module being tested in your library directory as Greeter.pm:

 package Greeter;

 sub new
 {

 my ($class, %args) = @_;
 bless \%args, $class;
 }

 sub name
 {
 my $self = shift;
 return $self->{name};
 }

 sub age
 {
 my $self = shift;
 return $self->{age};
 }

 sub greet
 {
 my $self = shift;
 return "Hello, my name is " . $self->name() . "!";
 }

 1;

Running the file from the command line with prove should reveal three

successful tests:

 $ prove greeter.t
 greeter.t....ok
 All tests successful.
 Files=1, Tests=4, 0 wallclock secs (0.07 cusr + 0.03 csys
= 0.10 CPU)

What just happened?
This program starts by loading the Greeter module and creating a new

Greeter object for Emily, age 21. The first test checks to see if the

constructor returned an actual Greeter object. isa_ok() performs several

checks to see if the variable is actually a defined reference, for example. It

fails if it is an undefined value, a non-reference, or an object of any class

other than the appropriate class or a derived class.

The next test checks that the object’s age matches the age set for Emily in

the constructor. Where a test using Test::Simple would have to perform

this comparison manually, Test::More provides the is() function that takes

two arguments to compare, along with the test description. It compares the

values, reporting a successful test if they match and a failed test if they

don’t.

NOTE
Test::More::is() uses a string comparison. This isn’t always the right choice for your data. See
Test::More::cmp_ ok() to perform other comparisons.

Similarly, the final test uses like() to compare the first two arguments. The

second argument is a regular expression compiled with the qr// operator.

like() compares this regular expression against the first argument—in this

case, the result of the call to $greeter->greet()—and reports a successful

test if it matches and a failed test if it doesn’t.

Avoiding the need to write the comparisons manually is helpful, but the real

improvement in this case is how these functions behave when tests fail. Add

two more tests to the file and remember to change the test plan to declare

six tests instead of four. The new code is:

 use Test::More tests => 6;

 ...

 is($greeter->age(), 22,
 'Emily just had a birthday');
 like($greeter->greet(), qr/Howdy, pardner!/,
 '... and she talks like a cowgirl');

NOTE
See “Regexp Quote-Like Operators” in perlop to learn more about qr//.

Run the tests again with prove’s verbose mode:

 $ prove -v greeter.t
 greeter.t....1..6
 ok 1 - use Greeter;
 ok 2 - The object isa Greeter
 ok 3 - age() should return age for object
 ok 4 - greet() should include object name
 not ok 5 - Emily just had a birthday
 # Failed test (greeter.t at line 18)
 # got: '21'
 # expected: '22'
 not ok 6 - ... and she talks like a cowgirl
 # Failed test (greeter.t at line 20)

 # 'Hello, my name is Emily!'
 # doesn't match '(?-xism:Howdy, pardner!)'
 # Looks like you failed 2 tests of 6.
 dubious
 Test returned status 2 (wstat 512, 0x200)
 DIED. FAILED tests 5-6
 Failed 2/6 tests, 66.67% okay
 Failed Test Stat Wstat Total Fail Failed List of Failed

 greeter.t 2 512 6 2 33.33% 5-6
 Failed 1/1 test scripts, 0.00% okay. 2/6 subtests failed,
66.67% okay.

NOTE
The current version of prove doesn’t display the descriptions of failing tests, but it does display
diagnostic output.

Notice that the output for the new tests—those that shouldn’t pass—

contains debugging information, including what the test saw, what it

expected to see, and the line number of the test. If there’s only one benefit

to using ok() from Test::Simple or Test::More, it’s these diagnostics.

What about...
Q: How do I test things that shouldn’t match?

A: Test::More provides isnt() and unlike(), which work the same way as

is() and like(), except that the tests pass if the arguments do not match.

Changing the fourth test to use isnt() and the fifth test to use unlike() will

make them pass, though the test descriptions will seem weird.

Chapter 2. Writing Tests
Perl has a rich vocabulary, but you can accomplish many things using only

a fraction of the power available. In the same way, Perl has an ever-

increasing number of testing modules and best practices built around the

simple ok() function described in Chapter 1.

The labs in this chapter guide you through the advanced features of

Test::More and other commonly used testing modules. You’ll learn how to

control which tests run and why, how to compare expected and received

data effectively, and how to test exceptional conditions. These are crucial

techniques that provide the building blocks for writing comprehensive test

suites.

Skipping Tests
Some tests should run only under certain conditions. For example, a

network test to an external service makes sense only if an Internet

connection is available, or an OS-specific test may run only on a certain

platform. This lab shows how to skip tests that you know will never pass.

How do I do that?
Suppose that you’re writing an English-to-Dutch translation program. The

Phrase class stores some text and provides a constructor, an accessor, and

an as_dutch() method that returns the text translated to Dutch.

Save the following code as Phrase.pm:

 package Phrase;
 use strict;

 sub new
 {
 my ($class, $text) = @_;
 bless \$text, $class;
 }

 sub text
 {
 my $self = shift;
 return $$self;
 }

 sub as_dutch
 {
 my $self = shift;
 require WWW::Babelfish;
 return WWW::Babelfish->new->translate(
 source => 'English',
 destination => 'Dutch',
 text => $self->text(),
);
 }

 1;

A user may or may not have the WWW::Babelfish translation module

installed. That’s fine; you’ve decided that Phrase’s as_dutch() feature is

optional. How can you test that, though?

Save the following code as phrase.t:

 #!perl

 use strict;

 use Test::More tests => 3;
 use Phrase;

 my $phrase = Phrase->new('Good morning!');
 isa_ok($phrase, 'Phrase');

 is($phrase->text(), 'Good morning!', "text() access works"
);

 SKIP:
 {
 eval 'use WWW::Babelfish';

 skip('because WWW::Babelfish required for as_dutch()', 1
) if $@;

 is(
 $phrase->as_dutch,
 'Goede ochtend!',
 "successfully translated to Dutch"
);
 }

Run the test file with prove in verbose mode. If you have WWW::Babelfish

installed, you will see the following output:

 $ prove -v phrase.t
 phrase....1..3
 ok 1 - The object isa Phrase
 ok 2 - text() access works
 ok 3 - successfully translated to Dutch
 ok
 All tests successful.
 Files=1, Tests=3, 1 wallclock secs (0.16 cusr + 0.01 csys
= 0.17 CPU)

If you run the test without WWW::Babelfish, you will see a different result:

 $ prove -v phrase.t
 phrase....1..3
 ok 1 - The object isa Phrase
 ok 2 - text() access works
 ok 3 # skip because WWW::Babelfish required for as_dutch()
 ok
 1/3 skipped: because WWW::Babelfish required for
as_dutch()
 All tests successful, 1 subtest skipped.
 Files=1, Tests=3, 0 wallclock secs (0.02 cusr + 0.00 csys
= 0.02 CPU)

What just happened?
The test file begins with a Test::More declaration, as you’ve seen in the

previous labs. The test file creates a sample Phrase object and also tests its

constructor and text() accessor.

To skip the test for as_dutch() if the user does not have the WWW::Babelfish

module installed requires a bit of special syntax. The test has a single block

labeled SKIP, which begins by attempting to load the WWW::Babelfish

module.

NOTE
You can have as many blocks labeled SKIP as you need. You can even nest them, as long as you
label every nested block SKIP as well.

If trying to use WWW::Babelfish fails, eval will catch such an error and put it

in the global variable $@. Otherwise, it will clear that variable. If there’s

something in $@, the function on the next line executes. skip(), yet another

function helpfully exported by Test::More, takes two arguments: the reason

to give for skipping the tests and the number of tests to skip. The previous

case skips one test, explaining that the optional module is not available.

Even though the test for as_dutch() did not run, it counts as a success

because marking it as a skipped test means that you expect it will never run

under the given circumstances. If WWW::Babelfish were available, the test

would run normally and its success or failure would count as a normal test.

NOTE
Test::Harness reports all skipped tests as successes because it’s behavior that you anticipated.

Skipping All Tests
The preceding lab demonstrated how to skip certain tests under certain

conditions. You may find cases where an entire test file shouldn’t run—for

example, when testing platform X-specific features on platform Y will

produce no meaningful results. Test::More provides a bit of useful syntax

for this situation.

How do I do that?
Use the plan function on its own instead of specifying the tests in the use()

statement. The following code checks to see if the current weekday is

Tuesday. If it is not, the test will skip all of the tests. Save it as skip_all.t:

 use Test::More;

 if ([localtime]->[6] != 2)
 {
 plan(skip_all => 'only run these tests on Tuesday');
 }
 else
 {
 plan(tests => 1);
 }

 require Tuesday;
 my $day = Tuesday->new();
 ok($day->coat(), 'we brought our coat');

Tuesday.pm is very simple:

 package Tuesday;

 sub new
 {
 bless { }, shift;
 }

 # wear a coat only on Tuesday
 sub coat
 {
 return [localtime]->[6] = = 2;
 }

 1;

Run this test file on a Tuesday to see the following output:

 $ prove -v skip_all.t
 chapter_01/skipping_all_tests....1..1
 ok 1 - we brought our coat
 ok
 All tests successful.
 Files=1, Tests=1, 1 wallclock secs (0.13 cusr + 0.04 csys
= 0.17 CPU)

NOTE
A real test file would have more tests; this is just an example.

Run it on any other day of the week to skip all of the tests:

 $ prove -v skip_all.t
 chapter_01/skipping_all_tests....1..0 # Skip only run these
tests on Tuesday skipped
 all skipped: only run these tests on Tuesday
 All tests successful, 1 test skipped.
 Files=1, Tests=0, 0 wallclock secs (0.14 cusr + 0.05 csys
= 0.19 CPU)

What just happened?
Instead of immediately reporting the test plan by passing extra arguments to

the use keyword, skip_all.t uses Test::More’s plan() function to determine

the test plan when the script runs. If the current weekday is not Tuesday, the

code calls plan() with two arguments: an instruction to run no tests and a

reason why. If it is Tuesday, the code reports the regular test plan and

execution continues as normal.

Marking Tests as TODO
Even though having a well-tested codebase can increase your development

speed, you may still have more features to add and bugs to fix than you can

program in the current session. It can be useful to capture this information

in tests, though they’ll obviously fail because there’s no code yet!

Fortunately, you can mark these tasks as executable, testable TODO items

that your test harness will track for you until you get around to finishing

them.

How do I do that?
Take a good idea for some code: a module that reads future versions of

files. That will be really useful. Call it File::Future, and save the following

code to File/Future.pm, creating the File/ directory first if necessary:

 package File::Future;

 use strict;

 sub new
 {
 my ($class, $filename) = @_;
 bless { filename => $filename }, $class;
 }

 sub retrieve
 {
 # implement later...
 }

 1;

The File::Future constructor takes a file path and returns an object.

Calling retrieve() on the object with a date retrieves that file at the given

date. Unfortunately, there is no Perl extension to flux capacitors yet. For

now, hold off on writing the implementation of retrieve().

There’s no sense in not testing the code, though. It’ll be nice to know that

the code does what it needs to do by whatever Christmas Acme::FluxFS

finally appears. It’s easy to test that. Save the following code as future.t:

 use Test::More tests => 4;
 use File::Future;

 my $file = File::Future->new('perl_testing_dn.pod');
 isa_ok($file, 'File::Future');

 TODO: {
 local $TODO = 'continuum not yet harnessed';

 ok(my $current = $file->retrieve('January 30, 2005')
);
 ok(my $future = $file->retrieve('January 30, 2070')
);

 cmp_ok(length($current), '<', length($future),
 'ensuring that we have added text by 2070');
 }

Run the test with prove. It will produce the following output:

 $ prove -v future.t
 future.t....1..4
 ok 1 - The object isa File::Future
 not ok 2 # TODO continuum not yet harnessed
 # Failed (TODO) test (future.t.pl at line 14)
 not ok 3 # TODO continuum not yet harnessed
 # Failed (TODO) test (future.t.pl at line 15)
 not ok 4 - ensuring that we have added text by 2070 # TODO
 continuum not yet harnessed
 # Failed (TODO) test (future.t at line 13)
 # '0'
 # <
 # '0'
 ok
 All tests successful.
 Files=1, Tests=4, 0 wallclock secs (0.02 cusr + 0.00 csys
= 0.02 CPU)

What just happened?
The test file for File::Future marks the tests for retrieval of documents

from the future as an unfinished, but planned, feature.

NOTE
Unlike skipped tests, tests marked as TODO do actually run. However, unlike regular tests, the
test harness interprets failing TODOs as a success.

To mark a set of tests as TODO items, put them in a block labeled TODO,

similar to the SKIP block from "Skipping Tests,” earlier in this chapter.

Instead of using a function similar to skip(), localize the $TODO variable and

assign it a string containing the reason that the tests should not pass.

Notice in the previous output that Test::More labeled the tests with TODO

messages and the TODO reason. The TODO tests fail, but because the test

file set that expectation, the test harness considers them successful tests

anyway.

What about...
Q: What happens if the tests succeed? For example, if the tests exercise a

bug and someone fixes it while fixing something else, what will happen?

A: If the tests marked as TODO do in fact pass, the diagnostics from the

test harness will report that some tests unexpectedly succeeded:

 $ prove -v future.t
 future-pass....1..4
 ok 1 - The object isa File::Future
 ok 2 # TODO continuum not yet harnessed
 ok 3 # TODO continuum not yet harnessed
 ok 4 # TODO continuum not yet harnessed
 ok
 3/4 unexpectedly succeeded
 All tests successful (3 subtests UNEXPECTEDLY SUCCEEDED).
 Files=1, Tests=4, 0 wallclock secs (0.02 cusr + 0.00 csys
= 0.02
 CPU)

This is good; you can then move the passing tests out of the TODO block

and promote them to full-fledged tests that should always pass.

Simple Data Structure Equality
Test::More’s is() function checks scalar equality, but what about more

complicated structures, such as lists of lists of lists? Good tests often need

to peer into these data structures to test whether, deep down inside, they are

truly equal. The first solution that may come to mind is a recursive function

or a series of nested loops. Hold that thought, though—Test::More and

other test modules provide a better way with their comparison functions.

How do I do that?
Save this code as deeply.t:

 use Test::More tests => 1;

 my $list1 =
 [
 [
 [48, 12],
 [32, 10],
],
 [
 [03, 28],
],
];

 my $list2 =
 [
 [
 [48, 12],
 [32, 11],
],
 [
 [03, 28],
],
];

 is_deeply($list1, $list2, 'existential equivalence');

Run it with prove -v to see the diagnostics:

 $ prove -v deeply.t
 deeply....1..1
 not ok 1 - existential equivalence
 # Failed test (deeply.t at line 23)
 # Structures begin differing at:
 # $got->[0][1][1] = '10'

 # $expected->[0][1][1] = '11'
 # Looks like you failed 1 tests of 1.
 dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 1
 Failed 1/1 tests, 0.00% okay
 Failed 1/1 test scripts, 0.00% okay. 1/1 subtests failed,
0.00% okay.
 Failed Test Stat Wstat Total Fail Failed List of Failed

 deeply.t 1 256 1 1 100.00% 1

What just happened?
The example test compares two lists of lists with the is_deeply() function

exported by Test::More. Note the difference between the two lists. Because

the first array contains a 10 where the second contains an 11, the test failed.

The output shows the difference between $list1 and $list2. If there are

multiple differences in the data structure, is_deeply() will display only the

first. Additionally, if one of the data structures is missing an element,

is_deeply() will show that as well.

What about...
Q: How do I see the differences, but not the similarities, between data

structures in my test output?

A: Test::Differences exports a function, eq_or_diff(), that shows a Unix

diff-like output for data structures. differences.t is a modified version of

the previous test file that uses this function.

 use Test::More tests => 1;
 use Test::Differences;

 my $list1 = [
 [
 [48, 12],
 [32, 10],
],
 [
 [03, 28],
],
];

 my $list2 = [
 [
 [48, 12],
 [32, 11],
],
 [
 [03, 28],
],
];

 eq_or_diff($list1, $list2, 'a tale of two references');

Running the file with prove produces the following output. Diagnostic lines

beginning and ending with an asterisk (*) mark where the data structures

differ.

 $ prove -v differences.t
 differences....1..1
 not ok 1 - a tale of two references
 # Failed test (differences.t at line 24)
 # +----+-----------+-----------+
 # | Elt|Got |Expected |
 # +----+-----------+-----------+
 # | 0|[|[|
 # | 1| [| [|
 # | 2| [| [|
 # | 3| 48, | 48, |
 # | 4| 12 | 12 |
 # | 5|], |], |
 # | 6| [| [|
 # | 7| 32, | 32, |
 # * 8| 10 | 11 *
 # | 9|] |] |
 # | 10|], |], |
 # | 11| [| [|
 # | 12| [| [|
 # | 13| 3, | 3, |
 # | 14| 28 | 28 |
 # | 15|] |] |
 # | 16|] |] |
 # | 17|] |] |
 # +----+-----------+-----------+
 # Looks like you failed 1 tests of 1.
 dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 1
 Failed 1/1 tests, 0.00% okay
 Failed 1/1 test scripts, 0.00% okay. 1/1 subtests failed,
0.00% okay.
 Failed Test Stat Wstat Total Fail Failed List of Failed

 differences.t 1 256 1 1 100.00% 1

Q: How do I compare two strings, line-by-line?

A: Test::Differences shows the difference between multiline strings with

its eq_or_diff() function. The following example tests the equality of two

multiline strings using eq_or_diff(). Save it as strings.t:

 use Test::More tests => 1;
 use Test::Differences;

 my $string1 = <<"END1";
 Lorem ipsum dolor sit
 amet, consectetuer
 adipiscing elit.
 END1

 my $string2 = <<"END2";
 Lorem ipsum dolor sit
 amet, facilisi
 adipiscing elit.
 END2

 eq_or_diff($string1, $string2, 'are they the same?');

Running it with prove produces the following output:

 $ prove -v strings.t
 strings....1..1
 not ok 1 - are they the same?
 # Failed test (strings.t at line 16)
 # +---+------------------------+------------------------+
 # | Ln|Got |Expected |
 # +---+------------------------+------------------------+
 # | 1|Lorem ipsum dolor sit |Lorem ipsum dolor sit |
 # * 2|amet, consectetuer |amet, facilisi *
 # | 3|adipiscing elit. |adipiscing elit. |
 # +---+------------------------+------------------------+
 # Looks like you failed 1 tests of 1.
 dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 1
 Failed 1/1 tests, 0.00% okay
 Failed 1/1 test scripts, 0.00% okay. 1/1 subtests failed,
0.00% okay.
 Failed Test Stat Wstat Total Fail Failed List of Failed

 strings.t 1 256 1 1 100.00% 1

The diagnostics resemble those from differences.t, with differing lines in

the multiline string marked with asterisks.

Q: How do I compare binary data?

A: It’s useful to see escape sequences of some sort in the differences, which

is precisely what the Test::LongString module does. Test::LongString

provides a handful of useful functions for comparing and testing strings that

are not in plain text or are especially long.

Modify strings.t to use the is_string() function, and save it as longstring.t:

 use Test::More tests => 1;
 use Test::LongString;

 my $string1 = <<"END1";
 Lorem ipsum dolor sit
 amet, consectetuer
 adipiscing elit.
 END1

 my $string2 = <<"END2";
 Lorem ipsum dolor sit
 amet, facilisi
 adipiscing elit.
 END2

 is_string($string1, $string2, 'are they the same?');

Run longstring.t using prove to see the following:

NOTE
Test::LongString also exports other handy stringtesting functions that produce similar diagnostic
output. See the module’s documentation for more information.

 $ prove -v longstring.t
 longstring....1..1
 not ok 1 - are they the same?
 # Failed test (longstring.t at line 16)
 # got: "Lorem ipsum dolor sit \x{0a}amet,
consectetuer \x{0a}adipisc"...
 # length: 61
 # expected: "Lorem ipsum dolor sit \x{0a}amet, facilisi
\x{0a}adipiscing "...
 # length: 57
 # strings begin to differ at char 23
 # Looks like you failed 1 tests of 1.
 dubious

 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 1
 Failed 1/1 tests, 0.00% okay
 Failed 1/1 test scripts, 0.00% okay. 1/1 subtests failed,
0.00% okay.
 Failed Test Stat Wstat Total Fail Failed List of Failed

 longstring.t 1 256 1 1 100.00% 1

The diagnostic output from Test::LongString’s is_string() escapes

nonprinting characters (\x{0a}), shows the length of each string (61 and

57), and shows the position of the first different character.

NOTE
\x{0a} is one way to represent the newline character.

Data Composition
As the data structures your code uses become more complex, so will your

tests. It’s important to verify what actually makes up a data structure instead

of simply comparing it to an existing structure. You could iterate through

each level of a complex nested hash of arrays, checking each and every

element. Fortunately, the Test::Deep module neatens up code testing

complicated data structures and provides sensible error messages.

How do I do that?
Save the following as cmp_deeply.t:

 use Test::More tests => 1;
 use Test::Deep;

 my $points =
 [
 { x => 50, y => 75 },
 { x => 19, y => -29 },
];

 my $is_integer = re('^-?\d+$');

 cmp_deeply($points,
 array_each(
 {
 x => $is_integer,
 y => $is_integer,
 }
),
 'both sets of points should be integers');

Now run cmp_deeply.t from the command line with prove. It will show one

successful test:

 $ prove cmp_deeply.t
 cmp_deep....ok
 All tests successful.
 Files=1, Tests=1, 0 wallclock secs (0.06 cusr + 0.00 csys
= 0.06 CPU)

What just happened?

cmp_deeply(), like most other testing functions, accepts two or three

arguments: the data structure to test, what you expect the structure to look

like, and an optional test description. The expected data, however, is a

special test structure with a format containing special Test::Deep functions.

The test file begins by creating a regular expression using re(), a function

exported by Test::Deep. re() declares that the data must match the given

regular expression. If you use a regular expression reference instead,

Test::Deep believes you expect the data to be a regular expression instead

of matching the data against it.

NOTE
re() also lets you perform checks on the data it matches. See the Test::Deep documentation for
details.

Test::Deep’s array_each() function creates the main test structure for the

test. To pass the test, $points must be an array reference. Every element of

the array must validate against the test structure passed to array_each().

Passing a hash reference as the test structure declares that every element

must be a hash reference and the values of the given hash must match the

values in the test structure’s hash. In cmp_deeply.t, the hash contains only

two keys, x and y, so the given hash must contain only those keys.

Additionally, both values must match the regular expression created with

re().

Test::Deep’s diagnostics are really useful with large data structures. Change

$points so that the y value of the first hash is the letter "Q“, which is invalid

according to the provided test structure. Save it as cmp_deeply2.t:

 use Test::More tests => 1;
 use Test::Deep;

 my $points =
 [
 { x => 50, y => 75 },
 { x => 19, y => 'Q' },
];

 my $is_integer = re('^-?\d+$');

 cmp_deeply($points,
 array_each(

 {
 x => $is_integer,
 y => $is_integer,
 }
)
);

Now run cmp_deeply2.t with prove -v. The cmp_deeply() function will fail

with the following diagnostic:

 $ prove -v cmp_deeply2.t
 cmp_deep2....# Failed test (cmp_deep2.t at line 11)
 # Using Regexp on $points->[1]{"y"}
 # got : 'Q'
 # expect : (?-xism:^-?\d+$)
 # Looks like you failed 1 tests of 1.
 dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 1
 Failed 1/1 tests, 0.00% okay
 Failed 1/1 test scripts, 0.00% okay. 1/1 subtests failed,
0.00% okay.
 Failed Test Stat Wstat Total Fail Failed List of Failed

 cmp_deep2.t 1 256 1 1 100.00% 1

The failure diagnostic shows the exact part of the data structure that failed

and explains that the value Q doesn’t match the regular expression

$is_integer.

What about...
Q: What if some values in the data structure may change?

A: To ignore a specific value, use the ignore() function in place of the

regular expression. The following example still ensures that each hash in

the array has both x and y keys, but doesn’t check the value of y:

 array_each(
 {
 x => $is_integer,
 y => ignore(),
 }
);

Q: What if some keys in the data structure may change?

A: Suppose that you want to make sure that each hash contains at least the

keys x and y. The superhashof() function ensures that the keys and values

of the structure’s hash appear in the given hash, but allows the given hash to

contain other keys and values:

 array_each(
 superhashof(
 {
 x => $is_integer,
 y => ignore(),
 }
)
);

NOTE
Think of sets, supersets, and subsets.

Similarly, Test::Deep’s subhashof() function ensures that a given hash may

contain some or all of the keys given in the test structure’s hash, but no

others.

Q: How do I check the contents of an array when I can’t predict the order of

the elements?

A: Test::Deep provides a bag() function that does exactly this. Save the

following as bag.t:

 use Test::More tests => 1;
 use Test::Deep;

 my @a = (4, 89, 2, 7, 1);

 cmp_deeply(\@a, bag(1, 2, 4, 7, 89));

Run bag.t to see that it passes the test. The bag() function is so common in

test files that Test::Deep provides a cmp_bag() function. You can also write

bag.t as follows:

 use Test::More tests => 1;
 use Test::Deep;

 my @a = (4, 89, 2, 7, 1);

 cmp_bag(\@a, [1, 2, 4, 7, 89]);

Where to learn more
This section is only a brief overview of the Test::Deep module, which

provides further comparison functions for testing objects, methods, sets

(unordered arrays with unique elements), booleans, and code references.

For more information, see the Test::Deep documentation.

Testing Warnings
The only parts of your code that don’t need tests are those parts that you

don’t need. If your code produces warnings in certain circumstances and

they’re important to you, you need to test that they occur when and only

when you expect them. The Test::Warn module provides helpful test

functions to trap and examine warnings.

How do I do that?
Save the following code as warnings.t:

 use Test::More tests => 4;
 use Test::Warn;

 sub add_positives
 {
 my ($l, $r) = @_;
 warn "first argument ($l) was negative" if $l < 0;
 warn "second argument ($r) was negative" if $r < 0;
 return $l + $r;
 }

 warning_is { is(add_positives(8, -3), 5) }
 "second argument (-3) was negative";

 warnings_are { is(add_positives(-8, -3), -11) }
 [
 'first argument (-8) was negative',
 'second argument (-3) was negative'
];

NOTE
There are no commas between the first and second arguments to any of Test:: Warn’s test
functions because their prototypes turn normallooking blocks into subroutine references.

Run the file with prove to see the following output:

 $ prove -v warnings.t
 warnings....1..4
 ok 1
 ok 2
 ok 3
 ok 4
 ok

 All tests successful.
 Files=1, Tests=4, 0 wallclock secs (0.04 cusr + 0.00 csys
= 0.04 CPU)

What just happened?
The test file declares and tests a trivial function, add_positives(). The

function adds two numbers together and warns the user if either number is

less than zero.

warning_is() takes a block of code to run and the text of the warning

expected. Like most other test functions, it takes an optional third argument

as the test description. Passing two less-than-zero arguments to

add_positives() causes the subroutine to produce two warnings. To test for

multiple warnings, use Test::Warn’s warnings_are(). Instead of a single

string, warnings_are() takes a reference to an array of complete warning

strings as its second argument.

What about...
Q: What if the warning I’m trying to match isn’t an exact string?

A: Test::Warn also exports warning_like(), which accepts a regular

expression reference instead of a complete string. Similarly, the

warnings_like() function takes an anonymous array of regular expression

references instead of just a single one. You can shorten warnings.t by using

these functions:

 use Test::More tests => 4;
 use Test::Warn;

 sub add_positives
 {
 my ($l, $r) = @_;
 warn "first argument ($l) was negative" if $l < 0;
 warn "second argument ($r) was negative" if $r < 0;
 return $l + $r;
 }

 warning_like { is(add_positives(8, -3), 5) }
qr/negative/;

 warnings_like { is(add_positives(-8, -3), -11) }
 [qr/first.*negative/, qr/second.*negative/];

Q: What if I want to assert that no warnings occur in a specific block?

A: That’s a good test for when add_positives() adds two natural numbers.

To ensure that a block of code produces no warnings, use Test::Warn’s

warnings_are() and provide an empty anonymous array:

 warnings_are { is(add_positives(4, 3), 7) } [];

Q: What if I want to make sure my tests don’t produce any warnings at all?

A: Use the Test::NoWarnings module, which keeps watch for any warnings

produced while the tests run. Test::NoWarnings adds an extra test at the end

that ensures that no warnings have occurred.

The following listing, nowarn.t, tests the add_positives() function and uses

Test::NoWarnings. Note that the test count has changed to accomodate the

extra test:

 use Test::More tests => 3;
 use Test::NoWarnings;

 sub add_positives {
 my ($l, $r) = @_;
 warn "first argument ($l) was negative" if $l < 0;
 warn "second argument ($r) was negative" if $r < 0;
 return $l + $r;
 }

 is(add_positives(4, 6), 10);
 is(add_positives(8, -3), 5);

The second test produces a warning, which Test::NoWarnings catches and

remembers. When run, the test diagnostics show any warnings that occurred

and the most recently run tests.

 nowarn....1..3
 ok 1
 ok 2
 not ok 3 - no warnings
 # Failed test (/usr/local/stow/perl-
5.8.6/lib/5.8.6/Test/NoWarnings.pm
 at line 45)
 # There were 1 warning(s)
 # Previous test 1 ''
 # second argument (-3) was negative at nowarn.t line
7.
 # at nowarn.t line 7
 # main::add_positives(8, -3) called at nowarn.t line
12

 #
 # Looks like you failed 1 tests of 3.
 dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 3
 Failed 1/3 tests, 66.67% okay
 Failed 1/1 test scripts, 0.00% okay. 1/3 subtests failed,
66.67% okay.
 Failed Test Stat Wstat Total Fail Failed List of Failed

 nowarn.t 1 256 3 1 33.33% 3

Testing Exceptions
Sometimes things go wrong. That’s okay; sometimes the best thing to do in

code that detects an unrecoverable error is to pitch a fit and let higher-level

code figure out what to do. If you do that, though, you need to test that

behavior. As usual, there’s a module to make this easy. Test::Exception

provides the functions to test that a block of code throws (or doesn’t throw)

the exceptions that you expect.

How do I do that?
Suppose that you’re happy with add_positives() from "Testing Warnings,”

but your coworkers can’t seem to use it correctly. They happily pass in

negative numbers and ignore the warnings, and then blame you when their

code fails to work properly. Your team lead has suggested that you

strengthen the function to hate negative numbers—so much so that it throws

an exception if it encounters one. How can you test that?

Save the following listing as exception.t:

 use Test::More tests => 3;
 use Test::Exception;
 use Error;

 sub add_positives
 {
 my ($l, $r) = @_;
 throw Error::Simple("first argument ($l) was negative")
if $l < 0;
 throw Error::Simple("second argument ($r) was negative")
if $r < 0;
 return $l + $r;
 }

 throws_ok { add_positives(-7, 6) } 'Error::Simple';
 throws_ok { add_positives(3, -9) } 'Error::Simple';
 throws_ok { add_positives(-5, -1) } 'Error::Simple';

NOTE
There are no commas between the first and second arguments to any of Test:: Exception’s test
functions.

Run the file with prove:

 $ prove -v exception.t
 exception....1..3
 ok 1 - threw Error::Simple
 ok 2 - threw Error::Simple
 ok 3 - threw Error::Simple
 ok
 All tests successful.
 Files=1, Tests=3, 0 wallclock secs (0.03 cusr + 0.00 csys
= 0.03 CPU)

What just happened?
The call to throws_ok() ensures that add_positives() throws an exception

of type Error::Simple. throws_ok() performs an isa() check on the

exceptions it catches, so you can alternatively specify any superclass of the

exception thrown. For example, because exceptions inherit from the Error

class, you can replace all occurrences of Error::Simple in exception.t with

Error.

What about...
Q: How can you ensure that code doesn’t throw any exceptions at all?

A: Use Test::Exception’s lives_ok() function.

To ensure that add_positives() does not throw an exception when given

natural numbers, add an extra test to assert that add_positives() throws no

exceptions:

 use Test::More tests => 4;
 use Test::Exception;
 use Error;

 sub add_positives
 {
 my ($l, $r) = @_;
 throw Error::Simple("first argument ($l) was negative")
if $l < 0;
 throw Error::Simple("second argument ($r) was negative")
if $r < 0;
 return $l + $r;
 }

 throws_ok { add_positives(-7, 6) } 'Error::Simple';
 throws_ok { add_positives(3, -9) } 'Error::Simple';

 throws_ok { add_positives(-5, -1) } 'Error::Simple';
 lives_ok { add_positives(4, 6) } 'no exception here!';

If the block throws an exception, lives_ok() will produce a failed test.

Otherwise, the test will pass.

Chapter 3. Managing Tests
All the normal rules of programming apply to tests: stay organized, reduce

duplication, and don’t take on more technical debt than you need. For small

projects, it’s easy to create and manage single test files. Large or important

projects need more thought and care. Where do you put your tests? How do

you organize them between files? What options do you have to reduce

complexity to manageable levels?

This chapter’s labs explain how to organize your test files into test suites,

know and improve the reach of your tests, write your own custom testing

libraries, and interpret test results.

Organizing Tests
Writing tests is easy. Managing tests well is more difficult. Having

complete test coverage is worthless if running the complete test suite is so

difficult that no one ever does it. Making your tests easy to run without user

intervention and making it easy to interpret their results will pay off over

and over again.

Using the standard testing tools that understand the Test Anything Protocol

is just one part of the process. Organizing your tests sensibly is another.

How do I do that?
Consider the tests for the Test::Harness module. Download the latest

distribution from the CPAN and extract it. Change into the newly created

directory, run Makefile.PL, and build and test the module:

NOTE
Look for the Download link at http://search.cpan.org/dist/Test-Harnes/ .

 $ perl Makefile.PL
 Checking if your kit is complete...
 Looks good
 Writing Makefile for Test::Harness
 $ make
 cp lib/Test/Harness/TAP.pod blib/lib/Test/Harness/TAP.pod
 cp lib/Test/Harness/Iterator.pm

http://search.cpan.org/dist/Test-Harnes/

blib/lib/Test/Harness/Iterator.pm
 cp lib/Test/Harness/Assert.pm blib/lib/Test/Harness/Assert.pm
 cp lib/Test/Harness.pm blib/lib/Test/Harness.pm
 cp lib/Test/Harness/Straps.pm blib/lib/Test/Harness/Straps.pm
 cp bin/prove blib/script/prove
 /usr/bin/perl5.8.6 "-MExtUtils::MY" -e "MY->fixin(shift)"
blib/script/prove
 <output snipped>
 $ make test
 PERL_DL_NONLAZY=1 /usr/bin/perl5.8.6 "-
MExtUtils::Command::MM" "-e"
 "test_harness(0, 'blib/lib', 'blib/arch')" t/*.t
 <output snipped>

What just happened?
Until now, all of the examples have mixed code and tests in the same file.

That’s fine for teaching, but it won’t work as well in production code.

There’s no technical reason to keep all of the tests for a particular program

or module in a single file, so create as many test files as you need,

organizing them by features, bugs, modules, or any other criteria.

The only technical requirement when using separate test files is that the

files must be able to load the modules they test. That means you must

manage Perl’s library paths appropriately. Fortunately, most good CPAN

modules handle this. The magic of making these tests work is the magic of

Perl module installation tools such as ExtUtils::MakeMaker and

Module::Build. Test::Harness uses the former, as the presence of

Makefile.PL implies.

By convention, CPAN modules follow a standard directory hierarchy:

 $ ls -l
 total 52
 drwxr-xr-x 2 chromatic wheel 4096 Jan 20 09:59 bin
 -rw-r—r-- 1 chromatic wheel 19110 Jan 20 09:51 Changes
 drwxr-xr-x 2 chromatic wheel 4096 Jan 20 09:59 examples
 drwxr-xr-x 3 chromatic wheel 4096 Jan 20 09:59 lib
 -rw-r—r-- 1 chromatic wheel 950 Dec 31 13:28 Makefile.PL
 -rw-r—r-- 1 chromatic wheel 1262 Dec 31 13:28 MANIFEST
 -rw-r—r-- 1 chromatic wheel 347 Jan 20 09:49 META.yml
 -rw-r—r-- 1 chromatic wheel 434 Dec 31 13:28 NOTES
 drwxr-xr-x 4 chromatic wheel 4096 Jan 20 09:59 t

NOTE
The -R flag causes ls to recurse into subdirectories, listing all of their files.

The modules themselves live in various subdirectories under the lib/
directory:

 $ ls -lR lib/
 lib:
 total 4
 drwxr-xr-x 3 chromatic wheel 4096 Jan 20 09:59 Test

 lib/Test:
 total 36
 drwxr-xr-x 2 chromatic wheel 4096 Jan 20 09:59 Harness
 -rw-r—r-- 1 chromatic wheel 29682 Jan 20 09:35 Harness.pm

 lib/Test/Harness:
 total 36
 -rw-r—r-- 1 chromatic wheel 958 Dec 31 13:28 Assert.pm
 -rw-r—r-- 1 chromatic wheel 1230 Dec 31 13:28 Iterator.pm
 -rw-r—r-- 1 chromatic wheel 18375 Dec 31 13:28 Straps.pm
 -rw-r—r-- 1 chromatic wheel 5206 Dec 31 13:28 TAP.pod

All of the test files live under the t/ directory:

 $ ls -l t/
 total 112
 -rw-r--r-- 1 chromatic wheel 541 Dec 31 13:28 00compile.t
 -rw-r--r-- 1 chromatic wheel 656 Dec 31 13:28 assert.t
 -rw-r--r-- 1 chromatic wheel 198 Dec 31 13:28 base.t
 -rw-r--r-- 1 chromatic wheel 2280 Dec 31 13:28 callback.t
 -rw-r--r-- 1 chromatic wheel 328 Dec 31 13:28 harness.t
 -rw-r--r-- 1 chromatic wheel 539 Dec 31 13:28 inc_taint.t
 drwxr-xr-x 4 chromatic wheel 4096 Jan 20 09:59 lib
 -rw-r--r-- 1 chromatic wheel 151 Dec 31 13:28 nonumbers.t
 -rw-r--r-- 1 chromatic wheel 71 Dec 31 13:28 ok.t
 -rw-r--r-- 1 chromatic wheel 275 Dec 31 13:28 pod.t
 -rw-r--r-- 1 chromatic wheel 755 Dec 31 13:28 prove-
globbing.t
 -rw-r--r-- 1 chromatic wheel 2143 Dec 31 13:28 prove-
switches.t
 drwxr-xr-x 2 chromatic wheel 4096 Jan 20 09:59 sample-tests
 -rw-r--r-- 1 chromatic wheel 17301 Dec 31 13:28 strap-
analyze.t
 -rw-r--r-- 1 chromatic wheel 8913 Dec 31 13:28 strap.t
 -rw-r--r-- 1 chromatic wheel 26307 Dec 31 13:28 test-
harness.t

NOTE
This is output from a Unix-like system. It will look different on other platforms.

Running Makefile.PL or Build.PL (in the case of Module::Build) writes out

either a Makefile or a Build file, respectively, that knows how to build the

module and its documentation as well as how to run the tests.

The default behavior is to run everything in the t/ directory that ends in .t.
The full command that make test ran earlier shows more details:

 PERL_DL_NONLAZY=1 /usr/bin/perl5.8.6 "-
MExtUtils::Command::MM" "-e"
 "test_harness(0, 'blib/lib', 'blib/arch')" t/*.t

The most important part of this command is the shell pattern at the end,

t/*.t. The shell expands it to include all of the files in the t/ directory in

sorted order.

If you’ve never installed this module before, how can the tests find the

module files? The preceding command-line invocation includes the blib/
subdirectories created during the make stage. Tests can also include a little

magic at the beginning to set up their working environment appropriately:

 BEGIN { chdir 't' if -d 't' }
 use lib '../lib';
 use blib;

NOTE
You can omit the blib line if you have pure-Perl modules that rely on nothing tricky during the
building process.

The contents of the BEGIN block change the current directory to the t/
directory immediately after Perl encounters it. This is important for the next

command, which loads the lib module to add the ../lib directory (a sibling

of t/) to @INC. Finally, the blib module adds the blib/lib and blib/arch
directories to @INC. All together, this set of commands allows you to run

your tests with perl itself, not just prove, make test, or perl Build test.

As long as you follow the convention of storing modules under lib/ and

tests under t/ and add the appropriate path manipulations to the start of the

test files, you can run and distribute your tests automatically with the

standard Perl tools.

What about...
Q: How can I run tests in a specific order?

A: Both ExtUtils::MakeMaker and Module::Build run tests in a predictable

order (alphabetically, with numbers coming before names). You can control

this order yourself by prepending numbers to the test names. For example,

00-first.t will run before 99-last.t.

NOTE
If you need even more customization, subclass Module::Build to override the ACTION_test()
method. It’s painful to override ExtUtils:: MakeMaker behavior, so avoid it if possible.

If a directory full of flat files isn’t enough organization for you, you can put

your tests in as many subdirectories of t/ as you like. Remember to tell your

build process about the change, though! See the test attribute for

Makefile.PL in the ExtUtils::MakeMaker documentation or the test_files

parameter for Build.PL in the Module::Build documentation.

Q: Do I need that magic BEGIN block? It looks complicated.

A: Not all tests need it. It’s useful if you need to know that you’re in a

specific directory—to create temporary files under t/ or to load testing

modules from t/lib/, for example. If your test file does neither, you can

safely omit it.

Checking Your Coverage
Having some tests is better than having no tests, but having enough tests is

better yet. Code coverage is one way to measure how much of the code the

tests actually test. Analyzing code coverage by hand is tedious. Fortunately,

the Devel::Cover module from the CPAN automates the analysis and

reporting for you. Best of all, it works with the standard Perl test harness.

How do I do that?
Install Devel::Cover and its dependencies (see "Installing Test Modules" in

Chapter 1). You need the ability to build XS modules, unless you install it

via ppm or some other binary package.

NOTE
XS is the Perl extension system. It allows the use of code written in languages other than Perl and
requires a working C development environment.

From the top level of a module directory, such as Test::Harness (see

"Organizing Tests,” earlier in this chapter), build the module, and then run

the following commands:

NOTE
If your module uses Module:: Build, use perl Build testcover instead of make test. Otherwise,
install ExtUtils:: MakeMaker:: Coverage and use make testcover.

 $ cover -delete
 Deleting database /home/chromatic/dev/install/Test-Harness-
2.46/cover_db
 $ HARNESS_PERL_SWITCHES=-MDevel::Cover make test
 PERL_DL_NONLAZY=1 /usr/bin/perl5.8.6 "-
MExtUtils::Command::MM" "-e"
 "test_harness(0, 'blib/lib', 'blib/arch')" t/*.t
 t/00compile.........ok 1/5# Testing Test::Harness 2.46
 t/00compile.........ok
 t/assert............ok
 t/base..............ok
 t/callback..........ok
 t/harness...........ok
 t/inc_taint.........ok
 t/nonumbers.........ok

 t/ok................ok
 t/pod...............ok
 t/prove-globbing....ok
 t/prove-switches....ok
 t/strap-analyze.....ok
 t/strap.............ok
 t/test-harness......ok
 56/208 skipped: various reasons
 All tests successful, 56 subtests skipped.
 Files=14, Tests=551, 255 wallclock secs
 (209.59 cusr + 4.98 csys = 214.57 CPU)

 $ cover
 Reading database from /home/chromatic/dev/Test-Harness-
2.46/cover_db

 ---------------------------------- ------ ------ ------ -----
- ------ ------
 File stmt branch cond sub
time total
 ---------------------------------- ------ ------ ------ -----
- ------ ------
 blib/lib/Test/Harness.pm 71.6 51.6 61.1
80.8 0.0 65.9
 blib/lib/Test/Harness/Assert.pm 100.0 100.0 n/a
100.0 0.0 100.0
 blib/lib/Test/Harness/Iterator.pm 70.0 25.0 n/a
80.0 98.9 65.5
 blib/lib/Test/Harness/Straps.pm 92.9 82.7 69.0
96.2 1.0 87.6
 Total 80.8 66.0 65.4
88.3 100.0 76.0
 ---------------------------------- ------ ------ ------ -----
- ------ ------

 Writing HTML output to /home/chromatic/dev/Test-Harness-
2.46/cover_db/coverage.html ...
 done.

NOTE
See the documentation for your shell to learn how to set the HARNESS_ PERL_ SWITCHES
environment variable.

NOTE
By default, Devel::Cover ignores the coverage of any file found in @INC, all *.t files, and Devel::
Cover itself. See the +ignore, -ignore, +inc, and -inc options in perldoc Devel:: Cover to learn how
to customize this.

This will take a while—several times as long as it takes your test suite to

run normally. Your reward is a nice tabular summary at the end as well as

some HTML files in the reported location.

What just happened?
When Devel::Cover runs a test suite, it profiles Perl code at the operational

level, marking every subroutine, statement, branch, and condition in the

code being tested to see if the tests actually exercise them. It writes its

output to a database file from which it can produce coverage reports.

The important results are in the report shown at the end, where each file

being tested has a percentage for subroutine, statement, branch, and

condition coverage as well as the percentage of the time spent testing for

that file and its overall coverage.

What are all of the types of coverage?

Statement coverage

Asks whether a test exercised a particular statement. Given the

statement $flag = 1;, any test that causes that statement to execute will

count as having covered it.

Branch coverage

Tracks whether the tests exercised both parts of a branching statement.

Given the code print "True!" if $flag;, the statement must run twice

—once where $flag is true and once where it is false—to achieve 100

percent branch coverage.

NOTE
The more complex your conditions, the more difficult they are to test, let alone read.

Condition coverage

Considers all of the possibilities of a logical condition. Given the

assignment my $name = shift || 'Ben'; within a subroutine, the test

must pass in a string with an actual value for $name at least once and

pass in no argument or an empty string at least once (receiving the

default value) to achieve full coverage for that conditional expression.

This is a very simple type of condition coverage, with only one variable

and two paths for coverage. More common are conditions with two

variables: short-circuiting expressions such as $a = $x || $y have three

paths for coverage, and fully evaluated expressions such as $a = $x xor

$y have four paths for coverage.

NOTE
Devel::Cover also runs Pod::Coverage (see "Testing Documentation Coverage,” in Chapter
4) and reports its results if you have it installed.

Subroutine coverage

Checks that a test exercised at least part of a subroutine. If you don’t

have full coverage for a particular module, start with the subroutine

coverage report to see which pieces of code need more tests.

Open the reports in your favorite web browser. You’ll see a colorful

hyperlinked summary generated by the final cover run (Figure 3-1).

Figure 3-1. Coverage summary

Click on the branch, condition, or subroutine coverage links to reach a page

of metrics that Devel::Cover gathered for every affected line in each tested

module.

NOTE
Devel::Cover uses B::Deparse to produce the output for the branch and condition reports. This
generates behaviorally—but not necessarily typographically—equivalent code.

Consider the links for Test::Harness. The branch coverage is 51.6 percent.

Click on that link to see a report showing line numbers for all of branches,

the percentage of coverage for each branch, the true or false conditions

taken for the branch, and the approximate branch expression. Figure 3-2

shows more details. The T and F columns show whether Devel::Cover

believes that the tests exercised the true and false versions of the branch,

respectively. A green background means yes and a red background means

no. The test run of this example exercised both true and false branches of

the condition in line 229, but exercised only the false branch in line 322.

Figure 3-2. Branch coverage report

The condition coverage report page is more complex. For each condition, it

reports the line number, the percentage of the condition the tests exercised,

and the deparsed code of the conditional expression. However, the

important details appear in a truth table that lists all possible boolean

combinations for each element of the expression.

In Figure 3-3, the tests exercised none of the possible combinations on line

210. Line 229 fared better, with the first expression tested for the two cases:

where A is false and then where both A and B are true. The second

expression had two tests as well, for the cases where A is false and B is true

and for the case where A is true.

NOTE
A is the first possible outcome of the condition, B is the second, C is the third, and so on.

The final report, which shows subroutine coverage, is very simple. It lists

the name and the line number of each subroutine, indicating with a red or

green cell background whether the tests covered it. Figure 3-4 shows

several BEGIN blocks (mostly use statements), with strap() and _all_ok()

having at least some tests and runtests() and _globdir() having none.

What about...
Q: How do I improve my test coverage?

A: Start with the subroutine coverage report. Any subroutine marked as

untested may have lurking bugs, or it may go unused throughout the code.

Either way, consider the affected code carefully.

Achieving complete test coverage can be difficult; Devel::Cover has a

complicated job to do and does it well, but it’s not perfect. Running

Figure 3-3. Condition coverage report

NOTE
1 means true, 0 means false, and X means that it doesn’t matter because of a short-circuited
condition.

Figure 3-4. Subroutine coverage report

a recent version of Perl will help, as will upgrading to newer versions of

Devel::Cover as they release. At times, you may have to simplify complex

constructs or live with less than 100 percent coverage. As the

documentation says, though, reporting potential bugs to the perl-

qa@perl.org mailing list is a good way to find enlightenment.

NOTE
Perl 5.8.2 is the minimum recommended version for using Devel::Cover. Any newer version
should work.

It is not always possible to achieve 100 percent coverage for all metrics.

Even when it is, trying to reach that goal may not be the best use of your

testing efforts. Code coverage can highlight areas in which your test suite is

weak and help you reason about your code. Understand what your test suite

does not test and why is valuable, even if you decide not to write a test for

it.

mailto:perl-qa@perl.org

Writing a Testing Library
By now, tests should seem less daunting. They’re just programs; all of the

normal good advice about design and organization applies. It makes sense

to keep related code in the same place. In Perl terms, this is a module: a

self-contained library of code.

Previous labs have demonstrated how to use several testing libraries. Some

come with Perl’s standard library. Others live on the CPAN, with new

modules released frequently. If you find yourself solving the same testing

problem repeatedly by twisting existing test modules in new directions,

consider writing your own testing library. Test::Builder makes it possible.

How do I do that?
The following example implements one function of a very simple testing

library. It adds one new function, is_between(), that tests whether a given

value is between two other values. Save the code under a lib/ directory

where you can reach it (see "Installing Test Modules,” in Chapter 1) as

Test/Between.pm:

NOTE
The use of subroutine prototypes is a convention in testing modules, but they’re not like
subroutine signatures in other languages. See the Prototypes section in perldoc perlsub for more
information.

 package Test::Between;

 use strict;
 use warnings;

 use base 'Exporter';

 our@EXPORT = qw(is_between);

 use Test::Builder;
 my $Test = Test::Builder->new();

 sub is_between ($$$;$)
 {
 my ($item, $lower, $upper, $desc) = @_;

 return
 (
 $Test->ok("$lower" le "$item" && "$item" le
"$upper", $desc) ||
 $Test->diag(" $item is not between $lower and
$upper")
);
 }

 1;

Now you can use it within your own test programs. Save the following code

as test_between.t:

 #!perl

 use strict;
 use warnings;

 use Test::More tests => 3;

 use Test::Between;

 is_between('b', 'a', 'c', 'simple alphabetical
comparison');
 is_between(2 , 1 , 3 , 'simple numeric comparison'
);
 is_between("two", 1 , 3 , 'mixed comparison'
);

NOTE
By design, Test:: Between doesn’t allow its users to set the plan. Why reinvent the wheel when it’s
likely that users will use the module with Test:: Simple or Test:: More anyway?

Run the test with perl:

 $ perl test_between.t
 1..3
 ok 1 - simple alphabetical comparison
 ok 2 - simple numeric comparison
 not ok 3 - mixed comparison
 # Failed test (examples/wtm_01.t at line 12)
 # two is not between 1 and 3
 # Looks like you failed 1 test of 3.

What just happened?

The test file behaves just like other tests shown so far, using Test::More to

set up a test plan. It also uses Test::Between just as it would any other

necessary module.

Test::Between uses the Exporter module to export the is_between()

function. The action starts with Test::Builder. All of the testing modules

shown so far use Test::Builder internally; it provides the basic ok()

function, the test plans, the test counter, and all of the output functions.

NOTE
Use Test::Builder and your module will work with all of the other testing modules that also use
Test::Builder.

Calling Test::Builder->new() returns a singleton, the same object every
time, to all of the testing modules. This is how it keeps the testing

environment consistent.

The is_between() function is simple by comparison. It has three required

arguments—the value to test, the lower bound, and the upper bound—and

one optional argument: the test description. The actual comparison happens

on a single line:

 "$lower" le "$item" && "$item" le "$upper"

This terse expression stringifies all of the arguments, then compares the

lower bound to the item and the item to the upper bound. If the lower bound

is less than or equal to the item and the item is less than or equal to the

upper bound, the expression evaluates to true. Otherwise, it’s false. Either

way, the result is simple enough to pass to Test::Builder’s ok() method,

along with the test description.

ok() records and reports the test appropriately, returning its truth or

falsehood. That allows another idiom for printing diagnostic information. If

the test has failed, the return value will be false and the function will call

diag() on the Test::Builder object to print the values of the item and the

bounds. This makes debugging much easier, of course.

What about...
Q: Can you add other types of comparisons?

A: Absolutely! is_between() has a few limitations, including treating all of

its arguments as strings and allowing the item to equal its lower or upper

bounds. As the third test showed, it’s not smart enough to know that the

number the string two represents is between one and three.

Test::Between would be more useful if it allowed numeric comparisons,

permitted “between but not equal” tests, and supported custom sorting

routines. These are all reasonably easy additions, though: just figure out

how to make the proper comparison, feed the results to $Test->ok(), report

a failure diagnostic if necessary, and add the new function to @EXPORT.

Q: How do you know that Test::Between works? Don’t you have to write

tests for your tests now?

A: Yes, but fortunately it’s not difficult. See "Testing a Testing Library,”

next.

Testing a Testing Library
Test::Builder makes writing custom testing libraries easy (see the previous
lab, "Writing a Testing Library“) by handling all of the distracting test
bookkeeping and management. They’re just code. Good libraries need good
tests, though.

Fortunately, using Test::Builder makes writing tests for these custom
libraries easier too, with a little help from Test::Builder::Tester.

How do I do that?
Consider a test suite for Test::Between (from "Writing a Testing Library“).
Save the following test file as between.t:

 #!perl

 use strict;
 use warnings;

 use Test::Between;
 use Test::Builder::Tester tests => 3;

 my $desc;

 $desc = 'simple alphabetical comparison';
 test_pass($desc);
 is_between('b', 'a', 'c', $desc);
 test_test($desc);

 $desc = 'simple numeric comparison';
 test_pass($desc);
 is_between(2, 1, 3, $desc);
 test_test($desc);

 $desc = 'mixed comparison';
 test_out("not ok 1 - $desc");
 test_fail(+2);
 test_diag(' two is not between 1 and 3');
 is_between("two", 1, 3, $desc);
 test_test('failed comparison with diagnostics');

NOTE
The $desc variable appears multiple times so as to avoid copying and pasting the test description
multiple times. Avoid repetition in tests as you would in any other code.

Run it with perl:

 $ perl between.t
 1..3
 ok 1 - simple alphabetical comparison
 ok 2 - simple numeric comparison
 ok 3 - failed comparison with diagnostics

What just happened?
between.t looks almost like any other test that uses Test::Between except
for one twist: instead of using Test::More to declare a test plan, it uses
Test::Builder::Tester, which provides its own test plan. From there, it has
three blocks of tests that correspond to the tests shown in "Writing a Testing
Library“--an alphabetical comparison that should pass, a numeric
comparison that should also pass, and a mixed comparison that should fail.

Test::Builder::Tester works by collecting information about what a test
should do, running the test, and comparing its actual output to the expected
output. Then it reports the results. This requires you to know if the test
should pass or fail and what kind of output it will produce.

The first test should pass, so the test file calls test_pass() to tell
Test::Builder::Tester to expect a success message with the test
description. Next, it calls the simple alphabetic comparison from the
previous lab. Finally, it calls test_test() to compare the actual result to the
expected result; this line produces the test output for Test::Harness to
interpret. Passing the description here produces nicer output for humans.

Testing the numeric comparison test works the same way.

The mixed comparison test should fail, so the test file uses test_fail() to
tell Test::Builder::Tester to expect a failure message. Because failure
messages include the line number of the failing test, the sole argument to
this function refers to the line number of the test call to test. That call
occurs in the second line following in the test file, just after the call to
test_diag(), so the argument is +2.

Because Test::Between produces diagnostics for failed tests, the code uses
test_diag() to test that diagnostic output.

Next comes the mixed comparison test that test_fail() expected, and then
a test_test() call to compare all of the expected output—both the failure
message and the diagnostics—to the received output.
Test::Builder::Tester expects the is_between() test to fail. If it does, the
test—whether Test::Between reports failures correctly—passes.

What about...
Q: How do you distribute tests for test modules?

A: Either set a dependency on Test::Builder::Tester in your Makefile.PL
or Build.PL file or bundle it with your code. Place it under your t/ directory
(in t/lib/Test/Builder/Tester.pm) and add the following lines to your test
files to set its path appropriately when they run. It requires no modules
outside of the standard library.

 BEGIN
 {
 chdir 't' if -d 't';
 use lib 'lib';
 }

Q: Debugging failed test library output is difficult. Can this be easier?

A: Test::Builder::Tester::Color, which ships with
Test::Builder::Tester, colorizes diagnostic output to make differences
easier to see. It requires the Term::ANSIColor module, so install that too.

To enable color debugging, either add the line:

 use Test::Builder::Tester::Color;

directly to your test files or load it from the command line when you run
your tests:

 $ perl -MTest::Builder::Tester::Color between.t

By default, matches between the received and expected output appear in
green reverse type and differences appear highlighted in red reverse type.

Writing a Testing Harness
TAP is a simple protocol (see "Interpreting Test Results" in Chapter 1), but

you shouldn’t have to write your own parser when Test::Harness already

knows how to interpret the results. However, Test::Harness only prints out

what it discovers.

NOTE
Test::Harness uses Test::Harness:: Straps internally

Test::Harness::Straps is a thin wrapper around a TAP parser. It collects

the results in a data structure but does not analyze or print them. Writing a

program to report those results in an alternate format is easy. If you want to

do something when tests fail, or if you want to do something more

complicated than simply reporting test results, why not write your own

testing harness?

How do I do that?
Save the following program somewhere in your path as new_harness.pl and

make it executable:

 #!perl

 use strict;
 use warnings;

 use Test::Harness::Straps;
 my $strap = Test::Harness::Straps->new();

 for my $file (@ARGV)
 {
 next unless -f $file;
 my %results = $strap->analyze_file($file);
 printf <<END_REPORT, $file, @results{qw(max seen ok skip
todo bonus)};
 Results for %s
 Expected tests: %d
 Tests run: %d
 Tested passed: %d
 Tests skipped: %d
 TODO tests: %d

 TODO tests passed: %d
 END_REPORT
 }

Run it on a directory full of tests (the Test::Harness suite, for example):

 $ new_harness t/strap*t
 Results for t/strap-analyze.t
 Expected tests: 108
 Tests run: 108
 Tested passed: 108
 Tests skipped: 0
 TODO tests: 0
 TODO tests passed: 0
 Results for t/strap.t
 Expected tests: 176
 Tests run: 176
 Tested passed: 176
 Tests skipped: 0
 TODO tests: 0
 TODO tests passed: 0

NOTE
Your shell should expand the file pattern t/strap*. t to include only the straps tests shown in the
output.

What just happened?
The first few lines start the program as normal, loading a few modules and

pragmas and creating a new Test::Harness::Straps object. The program

then loops around all filenames given on the command line, skipping them

if they don’t exist.

All of the magic happens in the call to analyze_file(). This method takes

the name of a test file to run, runs it, collects and parses the output, and

returns a hash with details about the test file. The rest of the program prints

some of these details.

As documented in Test::Harness::Straps, most of the keys of this hash are

straightforward. Table 3-1 lists the most important ones.

Table 3-1. Keys of a test file’s results

Key Description

max The number of tests planned to run

seen The number of tests actually run

ok The number of tests that passed

skip The number of tests skipped

todo The number of TODO tests encountered

bonus The number of TODO tests that passed

NOTE
The current version of Test:: Harness::Straps, as distributed with Test:: Harness, is an alpha
release. Andy Lester, the maintainer, plans to change the interface. Take this lab’s information as a
guideline and consider the module’s documentation as authoritative.

Another important key is details. It contains an array reference of hashes

containing details for each individual test. Table 3-2 explains the keys of

this hash.

Table 3-2. Keys of a test’s details

Key Description

ok Did the test pass, true or false?

actual_ok Did it pass without being a skipped or TODO test, true or false?

name The test description, if any.

type The type of the test, skip, todo, or normal (an empty string).

reason The reason for the skip or TODO, if either.

Testing Across the Network
Test::Harness::Straps makes writing custom test harnesses easy, but it’s

more flexible than you might think. Its input can come from anywhere.

Have you ever wanted to run tests on a remote machine and summarize

their output locally? That’s no problem.

How do I do that?
Save the following code as network_harness.pl:

 use Net::SSH::Perl;
 use Test::Harness::Straps;

 my $strap = Test::Harness::Straps->new();
 my $ssh = Net::SSH::Perl->new('testbox');
 $ssh->login(qw(username password));

 my ($stdout, $stderr, $exit) = $ssh->cmd('runtests');
 my %results = $strap->analyze_fh('testbox tests', $stdout);

 # parse %results as normal

NOTE
The first argument to analyze_fh() is the test’s name, corresponding to the test file name used with
analyze_file().

Suppose that you have code running on a machine named testbox. You have

access to that machine via SSH, and you have a program on that machine

called runtests that knows how to run tests for your application. Run

network_harness.pl as a normal Perl program and it will gather and parse

the output from testbox, reporting the results.

What just happened?
The harness connects to the testbox machine through SSH by using the

provided username and password. Then it issues the runtests command to

the remote machine, collects the results, and passes the output of the

command to the TAP parser object. From there, do whatever you like with

the results.

What about...
Q: Does the other machine have to have Perl running?

A: No, it can use any other language as long as it produces TAP output.

Q: What if you don’t want to or are unable to read from a socket on the

remote machine?

A: Put the test output into an array of lines, perhaps by reading it from a

web page on a remote server, and then use the analyze() method:

 use LWP::Simple;
 use Test::Harness::Straps;

 my $strap = Test::Harness::Straps->new();
 my $output = get('http://testbox/tests/smoketest.t');
 my @lines = split(/\n/, $output);
 my %results = $strap->analyze('testbox smoketest', \@lines
);

 # parse %results as normal

The only trick to this example is that analyze() expects a reference to an

array of lines of test output as its second argument. Otherwise, it behaves

exactly as normal.

Automating Test Runs
Improving code quality is the primary benefit of writing a large test suite,

but there are several other benefits, such as encouraging more careful

coding and better design. Well-written tests provide feedback on the state of

the project. At any point, anyone can run the tests to find out what works

and what has broken.

This is valuable enough that, besides encouraging developers to run the test

suite at every opportunity while developing, many projects automate their

test suites to run unattended at regular intervals, reporting any failures. This

smoketesting is highly valuable, as it can catch accidental mistakes as they

happen, even if developers forget to run the tests on their machines or check

in all of the necessary changes.

How do I do that?
Save the following code as run_smoketest.pl:

 #!perl

 use strict;
 use warnings;

 use constant SENDER => 'testers@example.com';
 use constant RECIPIENT => 'smoketester@example.com';
 use constant MAILHOST => 'smtp.example.com';

 use Cwd;
 use SVN::Client;
 use Email::Send;
 use Test::Harness::Straps;

 my $path = shift || die "Usage:\n$0 <repository_path>\n";
 my $revision = update_repos($path);
 my $failures = run_tests($path);

 send_report($path, $revision, $failures);

 sub update_repos
 {
 my $path = shift;
 my $ctx = SVN::Client->new();
 return $ctx->update($path, 'HEAD', 1);
 }

 sub run_tests
 {
 my $path = shift;
 my $strap = Test::Harness::Straps->new();
 my $cwd = cwd();

 chdir($path);

 my @failures;

 for my $test (<t/*.t>)
 {
 my %results = $strap->analyze_file($test);
 next if $results{passing};

 push @failures,
 {
 file => $test,
 ok => $results{ok},
 max => $results{max},
 };
 }

 chdir($cwd);

 return \@failures;
 }

 sub send_report
 {
 my ($revision, $path, $failures) = @_;
 return unless @$failures;

 my $message = sprintf(<<END_HEADER, RECIPIENT, SENDER,
 $path, $revision);
 To: %s
 From: %s
 Subect: Failed Smoketest For %s at Revision %d

 END_HEADER

 for my $failure (@$failures)
 {
 $message .= sprintf("%s:\n\tExpected: %d\n\tPassed:
%d\n",
 @$failure{qw(file max ok)});
 }

 send('SMTP', $message, MAILHOST);
 }

NOTE
By default, SVN:: Client uses cached credentials to log in to the Subversion repository. See its
documentation to change this.

NOTE
The chdir() calls exist to set up the testing environment just as if you’d run make test or perl Build
test on your own.

Be sure to install a recent version of Test::Harness, Email::Send, and

Subversion with its Perl bindings. Modify the three constants at the top of

the file to reflect your network setup.

Run the program, passing it the path to the working version directory of a

Subversion repository. For example:

NOTE
If you receive svn_path_join errors, remove the trailing slash from the working directory path.

 $ perl run_smoketest.pl ~/dev/repos/Text-WikiFormat/trunk

If any of the tests fail, you’ll receive an email report about the failures:

 To: smoketest@example.com
 From: smoketest_bot@example.com
 Subect: Failed Smoketest at Revision 19

 t/fail.t:
 Expected: 3
 Passed: 2

What just happened?
run_smoketest.pl is three programs at once, with a little bit of glue. First,

it’s a very simple Subversion client, thanks to the SVN::Client module.

Second, it’s a test harness, thanks to Test::Harness::Straps (see "Writing a

Testing Harness,” earlier in this chapter). Third, it’s an email reporter, using

Email::Send.

The program starts by pulling in the path to an existing Subversion

repository. It then calls update_repos() which creates a new SVN::Client

module and updates the repository with the absolute freshest code (denoted

by the symbolic constant HEAD tag in CVS and Subversion), recursively

updating all directories beneath it. It returns the number of this revision.

NOTE
Many other revision control systems have Perl bindings, but you can also use their command-line
tools directly from your programs.

Next, run_tests() cycles through each file with the .t extension in the the

repository’s t/ directory. It collects the results of only the failed tests—those

for which the passing key is false—and returns them in an array.

The program then calls send_report() to notify the recipient address about

the failures. If there are none, the function returns. Otherwise, it builds up a

simple email, reporting each failed test with its name and the number of

expected and passing tests. Finally, it sends the message to the specified

address, where developers and testers can pore over the results and fix the

failures.

What about...
Q: How do you run only specific tests? What if you have benchmarks and

other long-running tests in a different directory?

NOTE
The Aegis software configuration management system (http://aegis.sourceforge.net/) takes this
idea further, requiring all checkins to include tests that fail before the modifications and that pass
after them.

A: Customize the glob pattern in the loop in run_tests() to focus on as

many or as few tests as you like.

Q: Is it possible to automate the smoketest?

A: Because run_smoketest.pl takes the repository path on the command

line, it can run easily from cron. Beware, though, that

Test::Harness::Straps 2.46 and earlier spit out diagnostic information to

http://aegis.sourceforge.net/

STDERR. You may need to redirect this to /dev/null or the equivalent to avoid

sending messages to yourself.

Q: Could the report include other details, such as the diagnostics of each

failed test?

A: The limitation here is in what Test::Harness::Straps provides. Keep

watching future releases for more information.

Q: CVS and Subversion both provide ways to run programs when a

developer checks in a change. Can this smoketest run then?

A: Absolutely! This is an excellent way to ensure that no one can make

changes that break the main branch.

Chapter 4. Distributing Your Tests (and
Code)
The goal of all testing is to improve the quality of code. Quality isn’t just

the absence of bugs and features behaving as intended. High-quality code

and projects install well, behave well, have good and useful documentation,

and demonstrate reliability and care outside of the code itself. If your users

can run the tests too, that’s a good sign.

It’s not always easy to build quality into a system, but if you can test your

project, you can improve its quality. Perl has several tools and techniques to

distribute tests and test the non-code portions of your projects. The labs in

this chapter demonstrate how to use them and what they can do for you.

Testing POD Files
The Plain Old Documentation format, or POD, is the standard for Perl

documentation. Every Perl module distribution should contain some form

of POD, whether in standalone .pod files or embedded in the modules and

programs themselves.

As you edit documentation in a project, you run the risk of making errors.

While typos and omissions can be annoying and distracting, formatting

errors can render your documentation incorrectly or even make it unusable.

Missing an =cut on inline POD may cause bizarre failures by turning

working code into documentation. Fortunately, a test suite can check the

syntax of all of the POD in your distribution.

How do I do that?
Consider a module distribution for a popular racing sport. The directory

structure contains a t/ directory for the tests and a lib/ directory for the

modules and POD documents. To test all of the POD in a distribution,

create an extra test file, t/pod.t, as follows:

 use Test::More;

 eval 'use Test::Pod 1.00';
 plan(skip_all => 'Test::Pod 1.00 required for testing POD')
if $@;

 all_pod_files_ok();

Run the test file with prove:

 $ prove -v t/pod.t
 t/pod....1..3
 ok 1 - lib/Sports/NASCAR/Car.pm
 ok 2 - lib/Sports/NASCAR/Driver.pm
 ok 3 - lib/Sports/NASCAR/Team.pm
 ok
 All tests successful.
 Files=1, Tests=3, 0 wallclock secs (0.45 cusr + 0.03 csys
= 0.48 CPU)

What just happened?
Because Test::Pod is a prerequisite only for testing, it’s an optional

prerequisite for the distribution. The second and third lines of t/pod.t check

to see whether the user has Test::Pod installed. If not, the test file skips the

POD-checking tests.

NOTE
People who build modules likely need to run the tests. People who install prebuilt packages may
not.

One of the test functions exported by Test::Pod is all_pod_files_ok(). If

given no arguments, it finds all Perl-related files in a blib/ or lib/ directory

within the current directory. It declares a plan, planning one test per file

found. The previous example finds three files, all of which have valid POD.

If Test::Pod finds a file that doesn’t contain any POD at all, the test for that

file will be a success.

What about...
Q: How can I test a specific list of files?

A: Pass all_pod_files_ok() an array of filenames of all the files to check.

For example, to test the three files that Test::Pod found previously, change

t/pod.t to:

 use Test::More;

 eval 'use Test::Pod 1.00';
 plan(skip_all => 'Test::Pod 1.00 required for testing POD')
if $@;

 all_pod_files_ok(
 'lib/Sports/NASCAR/Car.pm',
 'lib/Sports/NASCAR/Driver.pm',
 'lib/Sports/NASCAR/Team.pm'
);

Q: Should I ship POD-checking tests with my distribution?

A: There’s no strong consensus in the Perl QA community one way or the

other, except that it’s valuable for developers to run these tests before

releasing a new version of the project. If the POD won’t change as part of

the build process, asking users to run the tests may have little practical

value besides demonstrating that you consider the validity of your

documentation to be important.

For projects released to the CPAN, the CPAN Testing Service

(http://cpants.dev.zsi.at/) currently considers the presence of POD-checking

tests as a mark of “kwalitee” (see Validating Kwalitee,” later in this

chapter). Not everyone agrees with this metric.

http://cpants.dev.zsi.at/

Testing Documentation Coverage
When defining an API, every function or method should have some

documentation explaining its purpose. That’s a good goal—one worth

capturing in tests. Without requiring you to hardcode the name of every

documented function, Test::Pod::Coverage can help you to ensure that all

the subroutines you expect other people to use have proper POD

documentation.

How do I do that?
Assume that you have a module distribution for a popular auto-racing sport.

The distribution’s base directory contains a t/ directory with tests and a lib/
directory with modules. Create a test file, t/pod-coverage.t, that contains the

following:

NOTE
Module::Starter creates a podcoverage. t test file if you use it to create the framework for your
distribution.

 use Test::More;

 eval 'use Test::Pod::Coverage 1.04';
 plan(
 skip_all => 'Test::Pod::Coverage 1.04 required for
testing POD coverage'
) if $@;

 all_pod_coverage_ok();

Run the test file with prove to see output similar to:

 $ prove -v t/pod-coverage.t
 t/pod-coverage....1..3
 not ok 1 - Pod coverage on Sports::NASCAR::Car
 # Failed test
(/usr/local/share/perl/5.8.4/Test/Pod/Coverage.pm
 at line 112)
 # Coverage for Sports::NASCAR::Car is 75.0%, with 1 naked
subroutine:
 # restrictor_plate
 ok 2 - Pod coverage on Sports::NASCAR::Driver
 ok 3 - Pod coverage on Sports::NASCAR::Team

 # Looks like you failed 1 tests of 3.
 dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 1
 Failed 1/3 tests, 66.67% okay
 Failed Test Stat Wstat Total Fail Failed List of
Failed

 t/pod-coverage.t 1 256 3 1 33.33% 1
 Failed 1/1 test scripts, 0.00% okay. 1/3 subtests failed,
66.67% okay.

What just happened?
The test file starts as normal, setting up paths to load the modules to test.

The second and third lines of t/pod-coverage.t check to see whether the

Test::Pod::Coverage module is available. If is isn’t, the tests cannot

continue and the test exits.

Test::Pod::Coverage exports the all_pod_coverage_ok() function, which

finds all available modules and tests their POD coverage. It looks for a lib/
or blib/ directory in the current directory and plans one test for each module

that it finds.

Unfortunately, the output of the prove command reveals that there’s some

work to do: the module Sports::NASCAR::Car is missing some

documentation for a subroutine called restrictor_plate(). Further

investigation of lib/Sports/NASCAR/Car.pm reveals that documentation is

lacking indeed:

 =head2 make

 Returns the make of this car, e.g., "Dodge".

 =cut

 sub make
 {
 ...
 }

 sub restrictor_plate
 {
 ...
 }

In the previous listing, make() has documentation, but restrictor_plate()

has none.

Pod::Coverage considers a subroutine to have documentation if there exists

an =head or =item that describes it somewhere in the module. The

restrictor_plate() subroutine clearly lacks either of these. Add the

following to satisfy that heuristic:

 =head2 make

 Returns the make of this car, e.g., "Dodge".

 =cut

 sub make
 {
 ...
 }

 =head2 restrictor_plate

 Returns whether this car has a restrictor plate installed.

 =cut

 sub restrictor_plate
 {
 ...
 }

Run the test again to see it pass:

 $ prove -v t/pod-coverage.t
 t/pod-coverage....1..3
 ok 1 - Pod coverage on Sports::NASCAR::Car
 ok 2 - Pod coverage on Sports::NASCAR::Driver
 ok 3 - Pod coverage on Sports::NASCAR::Team
 ok
 All tests successful.
 Files=1, Tests=3, 1 wallclock secs (0.51 cusr + 0.03 csys
= 0.54 CPU)

What about...
Q: I have private functions that I don’t want to document, but

Test::Pod::Coverage complains that they don’t have documentation. How

can I fix that?

A: See the Test::Pod::Coverage documentation for the also_private and

trustme parameters. These come from Pod::Coverage, which also has good

documentation well worth reading. By default, Test::Pod::Coverage makes

some smart assumptions that functions beginning with underscores and

functions with names in all caps are private.

Distribution Signatures
Cryptographically signing a distribution is more of an integrity check than a

security measure. As the documentation for Test::Signature explains, by

the time the make test portion of the installation checks the signature of a

module, you’ve already executed a Makefile.PL or Build.PL, giving

potentially malicious code the chance to run. Still, a signed distribution

assures you that every file in the distribution is exactly what the author

originally uploaded.

Signing a module distribution creates a file called SIGNATURE in the top-

level directory that contains checksums for every file in the distribution.

The author then signs the SIGNATURE file with a PGP or equivalent key.

If you sign your distribution, you should include a signature validity check

as part of the test suite.

How do I do that?
To sign a module, first install GnuPG and set up a private key that you’ll

use to do the signing with. For more information on how to use GnuPG, see

the Documentation section on the GnuPG web site at

http://www.gnupg.org/.

Next, install Module::Signature. Module::Signature provides the cpansign

utility to create and verify SIGNATURE files. Describing module

signatures, how to use cpansign, and considerations when bundling up

modules is a bigger topic than this lab allows, so please see the

Module::Signature documentation for information on how to sign your

modules.

Once you’ve signed your distribution, you should see a SIGNATURE file in

the distribution’s directory containing something like:

 This file contains message digests of all files listed in
MANIFEST,
 signed via the Module::Signature module, version 0.44.
 ...
 -----BEGIN PGP SIGNED MESSAGE-----
 Hash: SHA1

 SHA1 e72320c0cd1a851238273f7d1jd7d46t395mrjbs Changes
 SHA1 fm8b86bb3d93345751371f67chd01efe8tdua9f3 MANIFEST

http://www.gnupg.org/

 SHA1 67i17fa0ff0ea897b0a2e43ddac01m6e5r8n132s META.yml
 SHA1 cc0l0c8abd8a9941b1y0ad61fr808i7hfbcc32al Makefile.PL
 SHA1 1fa0y76d5dac6c64d15lb17f0td22l1sfmau2cci README
 SHA1 fd94a423d3e42462fec2if7997a19y8b6abs3f7m
lib/FAQ/Sciuridae.pm
 SHA1 b7504edf3808b62742e3bm00dc464d3i9lf2b39m
lib/FAQ/Sciuridae/Chipmunk.pm
 SHA1 edde6f2c4608bfeee6acf9effff9644jbc815d6e
lib/FAQ/Sciuridae/Marmot.pm
 ...

To verify the contents of SIGNATURE when the test suite is run, create a

test file 00-signature.t:

NOTE
Because a broken signature is a showstopper when installing modules, it is common practice to
prefix the file name with zeroes so that it runs early in the test suite.

 use Test::More;

 eval 'use Test::Signature';

 plan(skip_all => 'Test::Signature required for signature
verification')
 if $@;
 plan(tests => 1);
 signature_ok();

Run the test file with prove:

 $ prove -v t/00-signature.t
 t/00-signature....1..1
 ok 1 - Valid signature
 ok
 All tests successful.
 Files=1, Tests=1, 1 wallclock secs (0.57 cusr + 0.05 csys
= 0.62 CPU)

What just happened?
Validating signatures is only a suggested step in installing modules, not a

required one. Thus, 00-signature.t checks to see whether the user has

Module::Signature installed. It skips signature verification if not.

By default, Test::Signature exports a single function, signature_ok(),

which reports a single test that indicates the validity of the SIGNATURE
file.

To verify a SIGNATURE file, the test first checks the integrity of the PGP

signature contained within. Next, it creates a list of checksums for the files

listed in MANIFEST, comparing that list to the checksums supplied in

SIGNATURE. If all of these steps succeed, the test produced by

signature_ok() succeeds.

Internally, Test::Signature’s signature_ok() function and running

cpansign -v use the same verify() function found in Module::Signature. If

one of the steps to test the integrity of SIGNATURE fails, signature_ok()

will produce the same or similar output to that of cpansign -v. For

example, if one or more of the checksums is incorrect, the output will

display a comparison of the list of checksums in the style of the diff utility.

Testing Entire Distributions
A proper Perl distribution contains a handful of files and lists any

prerequisite modules that it needs to function properly. Each package

should have a version number and have valid POD syntax. If you’ve signed

your distribution cryptographically, the signature should validate. These are

all important features, so why not test them?

The Test::Distribution module can do just that with one simple test script.

How do I do that?
Given a module distribution Text::Hogwash, create a test file t/distribution.t
containing:

 use Test::More;

 eval 'require Test::Distribution';
 plan(skip_all => 'Test::Distribution not installed') if $@;
 Test::Distribution->import();

The -l option tells prove that modules for the distribution are in the lib/
directory. Run t/distribution.t using prove:

 $ prove -v -l t/distribution.t
 t/distribution....1..14
 ok 1 - Checking MANIFEST integrity
 ok 2 - use Text::Hogwash::Tomfoolery;
 ok 3 - use Text::Hogwash::Silliness;
 ok 4 - Text::Hogwash::Tomfoolery defines a version
 ok 5 - Text::Hogwash::Silliness defines a version
 ok 6 - All non-core use()d modules listed in PREREQ_PM
 ok 7 - POD test for lib/Text/Hogwash/Tomfoolery.pm
 ok 8 - POD test for lib/Text/Hogwash/Silliness.pm
 ok 9 - MANIFEST exists
 ok 10 - README exists
 ok 11 - Changes or ChangeLog exists
 ok 12 - Build.PL or Makefile.PL exists
 ok 13 - Pod Coverage ok
 ok 14 - Pod Coverage ok
 ok
 All tests successful.
 Files=1, Tests=14, 0 wallclock secs (0.19 cusr + 0.01 csys
= 0.20 CPU)

What just happened?
Test::Distribution calculates how many tests it will run and declares the

plan during its import() call. Some of these tests use modules covered

earlier, such as Test::Pod (Testing POD Files“), Test::Pod::Coverage

(Testing Documentation Coverage“), and Module::Signature (Distribution

Signatures“). Others are simple checks that would be tedious to perform

manually, such as ensuring that the MANIFEST and README files exist.

What about...
Q: Is it possible to test a subset of distribution properties, such as the

module prerequisites or package versions?

A: The Test::Distribution documentation includes a list of the types of

tests it performs, such as prereq and versions. Specify the types of tests

you want to run by using only or not after the import statement:

 Test::Distribution->import(only =>[qw(prereq versions)]
);

The previous listing passes two additional arguments to import(): the string

only and a reference to an array of the strings that represent the only types

of tests that Test::Distribution should perform. When running the

modified test file, the test output is much shorter because

Test::Distribution runs only the named tests:

 $ prove -v t/distribution.t
 t/distribution....1..5
 ok 1 - use Text::Hogwash::Tomfoolery;
 ok 2 - use Text::Hogwash::Silliness;
 ok 3 - Text::Hogwash::Tomfoolery defines a version
 ok 4 - Text::Hogwash::Silliness defines a version
 ok 5 - All non-core use()d modules listed in PREREQ_PM
 ok
 All tests successful.
 Files=1, Tests=5, 1 wallclock secs (0.62 cusr + 0.04 csys
= 0.66 CPU)

You can also use the not argument instead of only to prohibit

Test::Distribution from running specified tests. It will run everything

else.

Letting the User Decide
Installing a Perl module distribution is not always as simple as running the

build file and testing and installing it. Some modules present the user with

configuration options, such as whether to include extra features or to install

related utilities. The example tests shown previously have simply skipped

certain tests when prerequisite modules are not present. In other cases, it is

appropriate to ask the user to decide to run or to skip tests that require

network connectivity or tests that may take an exorbitant amount of time to

finish.

For example, consider the hypothetical module MD5::Solve, which reverses

one-way MD5 checksums at the cost of an incredible amount of time, not to

mention computing power and practicality. Performing this sort of task for

even a small amount of data is costly, and the test suite for this module must

take even more time to run. When installing the module, the user should

have the option of skipping the expensive tests.

How do I do that?
ExtUtils::MakeMaker and Module::Build provide prompt() functions that

prompt and receive input from the user who is installing the module. The

functions take one or two arguments: a message to display to the user and a

default value. These functions check the environment to make sure a human

is indeed sitting at the terminal and, if so, display the message and wait for

the user to enter a string. If there is no user present—in the case of an

automated install, for example—they return the default value.

Using ExtUtils::MakeMaker, the build script for the module Makefile.PL,

appears as follows:

 use strict;
 use warnings;
 use ExtUtils::MakeMaker qw(WriteMakefile prompt);

 my %config = (
 NAME => 'MD5::Solve',
 AUTHOR => 'Emily Anne Perlmonger
<emmils@example.com>',
 VERSION_FROM => 'lib/MD5/Solve.pm',
 ABSTRACT_FROM => 'lib/MD5/Solve.pm',
 PREREQ_PM => { 'Test::More' => 0, },

 dist => { COMPRESS => 'gzip -9f', SUFFIX =>
'gz', },
 clean => { FILES => 'MD5-Solve-*' },
);

 my @patterns = qw(t/*.t);

 print "= => Running the extended test suite may take weeks
or years! <= =\n";
 my $answer = prompt('Do you want to run the extended test
suite?', 'no');

 if ($answer =~ m/^y/i)
 {
 print "I'm going to run the extended tests.\n";
 push @patterns, 't/long/*.t';
 }
 else
 {
 print "Skipping extended tests.\n";
 }

 $config{test} = { TESTS => join ' ', map { glob } @patterns
};

 WriteMakefile(%config);

Running the build script generates a Makefile and displays the following

output, prompting the user to make a decision:

 $ perl Makefile.PL
 = => Running the extended test suite may take weeks or
years! <= =
 Do you want to run the extended test suite? [no] no
 Skipping extended tests.
 Checking if your kit is complete...
 Looks good
 Writing Makefile for MD5::Solve

What just happened?
Many Makefile.PL files consist of a single WriteMakefile() statement. The

previous Makefile.PL has an additional bit of logic to determine which sets

of test scripts to run. The test files in t/ always run, but those in t/long/ run

only if the user consents.

This file stores all of the options that a typical Makefile.PL provides to

WriteMakefile() in a hash instead. By default, the program expands the

pattern t/*.t into filenames that use glob by using the techniques described

in Bundling Tests with Modules,” later in this chapter. The program then

adds these filenames to %config.

Before modifying %config, however, the file uses the prompt() function to

ask the user to decide whether to run the lengthy tests. If the user’s answer

begins with the letter y, the code adds the glob string t/long/*.t to the list

of patterns of test files to run as part of the test suite during make test:

 $ make test
 cp lib/MD5/Solve.pm blib/lib/MD5/Solve.pm
 PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-
e"
 "test_harness(0, 'blib/lib', 'blib/arch')" t/00.load.t
t/pod-coverage.t
 t/pod.t t/long/alphanumeric.t t/long/digits.t
t/long/long-string.t
 t/long/longer-string.t t/long/punctuation.t
t/long/random.t
 t/long/short.t t/long/simple.t
 t/00.load...............ok
 t/long/alphanumeric.....ok
 t/long/digits...........ok
 t/long/long-string......ok
 t/long/longer-string....ok
 t/long/punctuation......ok
 t/long/random...........ok
 ...

However, if ExtUtils::MakeMaker decides not to ask for user input or the

user hits the Enter key to accept the default value, the return value of

prompt() will be no. In the previous example, the user entered no explicitly,

so the tests in t/long/ will not run:

 $ make test
 cp lib/MD5/Solve.pm blib/lib/MD5/Solve.pm
 PERL_DL_NONLAZY=1 /usr/bin/perl "-MExtUtils::Command::MM" "-
e"
 "test_harness(0, 'blib/lib', 'blib/arch')" t/00.load.t
t/pod-coverage.t
 t/pod.t
 t/00.load.........ok
 t/pod-coverage....ok
 t/pod.............ok
 All tests successful.
 Files=3, Tests=3, 1 wallclock secs (1.09 cusr + 0.09 csys
= 1.18 CPU)

Letting the User Decide (Continued)
Module::Build provides a prompt() method that takes the same arguments

as the prompt() function exported by ExtUtils::MakeMaker. However, this

prompt() is a method, so either call it on the Module::Build class or a

Module::Build or subclass object.

Module::Build also provides a y_n() method that returns either true or false,

to simplify asking boolean questions. The y_n() method takes the same

arguments as prompt(), except that the default answer, if supplied, must be

either y or n.

How do I do that?
The Build.PL file for the MD5::Solve module is:

 use strict;
 use warnings;
 use Module::Build;

 print "= => Running the extended test suite may take weeks
or years! <= =\n";
 my $answer = Module::Build->y_n(
 'Do you want to run the extended test suite?', 'n'
);

 my $patterns = 't/*.t';

 if ($answer)
 {
 print "I'm going to run the extended tests.\n";
 $patterns .= ' t/long/*.t';
 }
 else
 {
 print "Skipping extended tests.\n";
 }

 my $builder = Module::Build->new(
 module_name => 'MD5::Solve',
 license => 'perl',
 dist_author => 'Emily Anne Perlmonger
<emmils@example.com>',
 dist_version_from => 'lib/MD5/Solve.pm',
 build_requires => { 'Test::More' => 0, },
 add_to_cleanup => ['MD5-Solve-*'],

 test_files => $patterns,
);

 $builder->create_build_script();

NOTE
Module::Build automatically expands the pattern(s) of files given to test_files.

Run Build.PL to see:

 $ perl Build.PL
 = => Running the extended test suite may take weeks or
years! <= =
 Do you want to run the extended test suite? [n] n
 Skipping extended tests.
 Checking whether your kit is complete...
 Looks good
 Creating new 'Build' script for 'MD5-Solve' version '0.01'

What just happened?
Similar to the Makefile.PL example earlier, the build script prompts the user

whether to run the extended tests. If the user responds positively, $answer

will be true, and the code will append t/long/*.t to the list of patterns of

files to run in the test suite. Otherwise, only test files matching t/*.t will

run during make test.

Bundling Tests with Modules
When releasing modules, you should always include a test suite so that the

people installing your code can have confidence that it works on their

systems. Tools such as the CPAN shell will refuse to install a distribution if

any of its tests fail, unless the user forces a manual installation. If you

upload the module to the CPAN, a group of dedicated individuals will

report the results of running your test suite on myriad platforms. The CPAN

Testers site at http://testers.cpan.org/ reports their results.

This lab explains how to set up a basic distribution, including the directory

structure and minimal test suite.

How do I do that?
Module distributions are archives that, when extracted, produce a standard

directory tree. Every distribution should contain at least a lib/ directory for

the reusable module files, a Build.PL or Makefile.PL to aid in testing and

installing the code, and a t/ directory that contains the tests for the module

and any additional data needed for testing.

If you haven’t already created a directory structure for the distribution, the

simplest way to start is by using the module-starter command from the

Module::Starter distribution. module-starter creates the directories you

need and even includes sample tests for your module.

Go ahead and install Module::Starter. Once installed, you should also have

the module-starter program in your path. Create a fictitious distribution for

calculating taxes that includes two modules, Taxes::Autocomplete and

Taxes::Loophole:

NOTE
Perl’s documentation suggests using h2xs to create new modules. Module::Starter is just a modern
alternative.

 $ module-starter --mb --distro=Taxes \
 --module=Taxes::Autocomplete,Taxes::Loophole
 --author='John Q. Taxpayer' \
 --email='john@bigpockets.com' --verbose
 Created Taxes

http://testers.cpan.org/

 Created Taxes/lib/Taxes
 Created Taxes/lib/Taxes/Autocomplete.pm
 Created Taxes/lib/Taxes/Loophole.pm
 Created Taxes/t
 Created Taxes/t/pod-coverage.t
 Created Taxes/t/pod.t
 Created Taxes/t/00-load.t
 Created Taxes/Build.PL
 Created Taxes/MANIFEST
 Created starter directories and files

module-starter creates a complete distribution in the directory Taxes/.
Further inspection of the Taxes/t/ directory reveals three test files:

 $ ls -1 Taxes/t/
 00-load.t
 pod-coverage.t
 pod.t

Any test files you add to Taxes/t/ will run during the testing part of the

module installation.

What just happened?
The module-starter command creates a skeleton directory structure for

new modules. This structure includes the three test files in the previous

output. These files perform basic tests to make sure your module maintains

a certain level of quality (or “kwalitee”—see Validating Kwalitee,” later in

this chapter).

t/pod-coverage.t and t/pod.t test POD documentation validity and coverage,

respectively. t/00-load.t contains the “basic usage” test, which may be the

most common type of test within different Perl module distributions. This

test simply checks whether the modules in the distribution load properly.

Note that module-starter has lovingly filled in all of the module names for

you:

 use Test::More tests => 2;

 BEGIN
 {
 use_ok('Taxes::Autocomplete');
 use_ok('Taxes::Loophole');
 }

 diag("Testing Taxes::Autocomplete

$Taxes::Autocomplete::VERSION,
 Perl 5.008004, /usr/bin/perl");

You might see the same sort of tests in a test file with a different name, such

as 00_basic.t or just load.t, or it may be one of several tests in another file.

What about?
Q: I have 8,000 test files in my t/ directory! Can I use subdirectories to

organize them better?

A: Sure thing. If you use Module::Build, specify a test_files key whose

value is a space-delimited string containing just the patterns of test files.

Module::Build automatically expands the patterns.

 use Module::Build;

 my $build = Module::Build->new(
 ...
 test_files => 't/*.t t/*/*.t',
 ...
);

 $builder->create_build_script();

Alternatively, set the recursive_test_files flag to use every .t file found

within the t/ directory and all of its subdirectories:

 use Module::Build;

 my $build = Module::Build->new(
 ...
 recursive_test_files => 1,
 ...
);

 $builder->create_build_script();

If you use ExtUtils::MakeMaker and Makefile.PL instead, do the equivalent

by providing a test key to the hash given to WriteMakefile():

 use ExtUtils::MakeMaker;

 WriteMakeFile(
 ...
 test => { TESTS => join ' ', map { glob } qw(t/*.t
t/*/*.t) },
 ...
);

The value of the test hash pair must be a hash reference with the key

TESTS. The value is a space-delimited string of all test files to run. In the

previous example, join and glob create such a a string based on the two

patterns t/*.t and t/*/*.t. This is necessary because WriteMakeFile() will

not automatically expand the patterns when used with ActiveState Perl on

Windows.

Collecting Test Results
Distributing your tests with your code is a good diagnostic practice that can

help you to ensure that your code works when your users try to run it. At

least it’s good for diagnostics when you can convince your users to send

you the appropriate test output. Rather than walk them through the steps of

running the tests, redirecting their output to files, and sending you the

results, consider automating the process of gathering failed test output and

useful information.

As usual, the CPAN has the solution in the form of

Module::Build::TestReporter.

How do I do that?
Consider a Chef module that can slice, dice, fricassee, and boil ingredients.

Create a new directory for it, with lib/ and t/ subdirectories. Save the

following code as lib/Chef.pm:

 package Chef;

 use base 'Exporter';

 use strict;
 use warnings;

 our $VERSION = '1.0';
 our @EXPORT = qw(slice dice fricassee);

 sub slice
 {
 my $ingredient = shift;
 print "Slicing $ingredient...\n";
 }

 sub dice
 {
 my $ingredient = shift;
 print "Dicing $ingredient...\n";
 }

 sub fricassee
 {
 my $ingredient = shift;
 print "Fricasseeing $ingredient...\n";

 }

 sub boil
 {
 my $ingredient = shift;
 print "Boiling $ingredient...\n";
 }

 1;

NOTE
Yes, the missing export of boil () is intentional.

Save a basic, “does it compile?” test file as t/use.t:

 #!perl

 use strict;
 use warnings;

 use Test::More tests => 1;

 my $module = 'Chef';
 use_ok($module) or exit;

Save the following test of its exports as t/chef_exports.t:

 #!perl

 use strict;
 use warnings;

 use Test::More tests => 5;

 my $module = 'Chef';
 use_ok($module) or exit;

 for my $export (qw(slice dice fricassee boil))
 {
 can_ok(_ _PACKAGE_ _, $export);
 }

Finally, save the following build file as Build.PL:

 use Module::Build::TestReporter;

 my $build = Module::Build::TestReporter->new(
 module_name => 'Chef',
 license => 'perl',
 report_file => 'chef_failures.txt',

 report_address => 'chef-failures@example.com',
 dist_version_from => 'lib/Chef.pm',
);

 $build->create_build_script();

Now build the module as normal and run the tests:

 $ perl Build.PL
 Creating new 'Build' script for 'Chef' version '1.0'
 $ perl Build
 lib/Chef.pm -> blib/lib/Chef.pm
 $ perl Build test
 t/use.t...ok
 Tests failed!
 Please e-mail 'chef_failures.txt' to chef-
failures@example.com.

What just happened?
Hang on, that’s a lot different from normal. What’s chef_failures.txt? Open

it with a text editor; it contains output from the failed tests as well as

information about the currently running Perl binary:

 Test failures in 't/chef.t' (1/5):
 5: - main->can('boil')
 Failed test (t/chef.t at line 13)
 main->can('boil') failed

 Summary of my perl5 (revision 5 version 8 subversion 6)
configuration:
 <...>

Module::Build::TestReporter diverts the output of the test run and reports

any failures to the file specified in Build.PL’s report_file parameter. It

also prints a message about the failures and gives the address to which to

send the results.

What happens if the tests all succeed? Open lib/Chef.pm and change the

export line:

 @EXPORT = qw(slice dice fricassee boil);

Then run the tests again:

 $ perl Build test
 All tests passed.

You’re happy, the users are happy, and there’s nothing left to do.

This lowers the barrier for users to report test failures. You don’t have to

walk them through running the tests in verbose mode, trying to capture the

output. All they have to do is to email you the report file.

NOTE
You can’t guarantee that they will contact you, but you can make it easier.

What about...
Q: What if I already have a Module::Build subclass?

A: Make your subclass inherit from Module::Build::TestReporter instead.

See the module’s documentation for other ideas, too!

Q: Can I have Module::Build::TestReporter email me directly? How about

if it posted the results to a web page? That would make it even easier to

retrieve failure reports from users.

A: It would, but can you guarantee that everyone running your tests has a

working Internet connection or an SMTP server configured for Perl to use?

If so, feel free to subclass Module::Build::TestReporter to report directly

to you.

Q: My output looks different. Why?

A: This lab covered an early version of the module. It may change its

messages slightly. The basic functions will remain the same, though. As

with all of the other testing modules, see the documentation for current

information.

Validating Kwalitee
After all of the work coming up with the idea for your code, writing your

code, and testing your code (or writing the tests and then writing the code),

you may be ready to share your masterpiece with the world. You may feel

understandably nervous; even though you know you have good tests, many

other things could go wrong—things you won’t recognize until they do go

wrong.

Fortunately, the Perl QA group has put together loose guidelines of code

kwalitee based on hard-won experience about what makes installing and

using software easy and what makes it difficult. The CPAN Testing Service,

or CPANTS, currently defines code kwalitee in 17 ways; see

http://cpants.dev.zsi.at/kwalitee.html for more information.

NOTE
Kwalitee isn’t quite the same as quality, but it’s pretty close and it’s much easier to test.

Rather than walking through all 17 indicators by hand, why not automate

the task?

How do I do that?
Download and install Test::Kwalitee. Then add the following code to your

t/ directory as kwalitee.t:

 #!perl

 eval { require Test::Kwalitee };
 exit if $@;
 Test::Kwalitee->import();

Then run the code with perl:

 $ perl t/kwalitee.t
 1..8
 ok 1 - checking permissions
 ok 2 - looking for symlinks
 ok 3 - needs a Build.PL or Makefile.PL
 ok 4 - needs a MANIFEST
 ok 5 - needs a META.yml
 ok 6 - needs a README

http://cpants.dev.zsi.at/kwalitee.html

 ok 7 - POD should have no errors
 ok 8 - code should declare all non-core prereqs

What just happened?
The test file is very simple. Test::Kwalitee does all of its work behind the

scenes. The eval and exit lines exist to prevent the tests from attempting to

run and failing for users who do not have the module installed.

Test::Kwalitee judges the kwalitee of a distribution on eight metrics:

Are the permissions of the files sane? Read-only files cause some

installers difficulty.

NOTE
See the documentation for changes to these metrics.

Are there any symbolic links in the distribution? They do not work on all

filesystems.

Is there a file to run to configure, build, and test the distribution?

Is there a MANIFEST file listing all of the distribution files?

Is there a META.yml file containing the distribution’s metadata?

Is there a README file?

Are there any errors in the included POD?

Does the distribution use any modules it has not declared as

prerequisites?

If all of those tests pass, the module has decent kwalitee. Kwalitee doesn’t

guarantee that your code works well, or even at all, but it is a sign that

you’ve bundled it properly.

What about...
Q: Should I distribute this test with my other tests?

A: Opinions vary. It’s a useful test to run right before you release a new

version of your distribution just to make sure that you haven’t forgotten

anything, but unless you’re generating files that might change the code

being tested on different platforms, this test won’t reveal anything

interesting when your users run it.

If you don’t want to distribute the test and if you use Module::Build or

ExtUtils::MakeMaker to bundle your distribution, add this test to your

normal t/ directory, but do not add it to your MANIFEST file. You can still

run the test with make test, perl Build test, or prove, but make tardist,

make dist, and perl Build dist will exclude it from the distribution file.

Q: What if I disagree with a Kwalitee measurement and want to skip the

test?

A: See the documentation of Test::Kwalitee to learn how to disable certain

tests.

Chapter 5. Testing Untestable Code
One of the precepts of good unit testing is to test individual pieces of code
in isolation. Besides helping to ensure that your code works, this testing
improves your design by decoupling unrelated modules and enforcing
communication among well-defined and, hopefully, well-tested interfaces.
It also makes debugging failed tests easier by reducing the number of
failure points.

Testing in isolation is difficult, though. Most applications have some degree
of interdependence between components, being the sum of individual
pieces that don’t always make sense when isolated from the whole. An
important pattern of behavior in testing is mocking : replacing untestable or
hard-to-test code with code that looks like the real thing but makes it easier
to test. Perl’s easygoing nature allows you to poke around in other people’s
code in the middle of a program without too much trouble.

This chapter’s labs demonstrate how to change code—even if it doesn’t
belong to you or if it merely touches what you really want to test—in the
middle of your tests. Though fiddling with symbol tables and replacing
variables and subroutines is very powerful, it is also dangerous. It’s too
useful a tool not to consider, though. Here’s when, why, and how to do it
safely.

Overriding Built-ins
No matter how nice it might be to believe otherwise, not all of the world is
under your control. This is particularly true when dealing with Perl’s built-
in operators and functions, which can wreak havoc on your psyche when
you’re trying to test your code fully. Your program may need to run a
system() call and deal with failure gracefully, but how do you test that?

Start by redefining the problem.

How do I do that?
Suppose you have written a module to play songs on your computer. It
consists of a class, SongPlayer, that holds a song and the application to use

to play that song. It also has a method, play(), that launches the application
to play the song. Save the following code as lib/SongPlayer.pm:

 package SongPlayer;

 use strict;
 use warnings;

 use Carp;

 sub new
 {
 my ($class, %args) = @_;
 bless \%args, $class;
 }

 sub song
 {
 my $self = shift;
 $self->{song} = shift if @_;
 $self->{song};
 }

 sub player
 {
 my $self = shift;
 $self->{player} = shift if @_;
 $self->{player};
 }

 sub play
 {
 my $self = shift;
 my $player = $self->player();
 my $song = $self->song();

 system($player, $song) = = 0 or
 croak("Couldn't launch $player for $song: $!\n");
 }

 1;

Testing the constructor (new()) and the two accessors (song() and player())
is easy. Testing play() is more difficult for two reasons. First, it calls
system(), which relies on behavior outside of the testing environment. How
can you know which songs and media players people will have on their
systems? You could bundle samples with the tests, but trying to support a
full-blown media player on all of your target systems and architectures

could be painful. Second, system() has side effects. If it launches a
graphical program, there’s no easy way to control it from Perl. To continue
the tests, the user will have to exit it manually—so much for automation.

How can you write this test portably?

When you don’t have the world you want, change it. Save this test file as
songplayer.t:

 #!perl

 use strict;
 use warnings;

 use lib 'lib';

 use Test::More tests => 11;
 use Test::Exception;

 my $module = 'SongPlayer';
 use_ok($module) or exit;

 can_ok($module, 'new');
 my $song = $module->new(song => 'RomanceMe.mp3', player =>
'xmms');
 isa_ok($song, $module);

 can_ok($song, 'song');
 is($song->song(), 'RomanceMe.mp3',
 'song() should return song set in constructor');

 can_ok($song, 'player');
 is($song->player(), 'xmms',
 'player() should return player set in constructor');

 can_ok($song, 'play');

 {
 package SongPlayer;

 use subs 'system';

 package main;

 my $fail = 0;
 my @args;

 *SongPlayer::system = sub
 {
 @args = @_;

 return $fail;
 };

 lives_ok { $song->play() } 'play() should live if
launching succeeds';

 is_deeply(\@args, [qw(xmms RomanceMe.mp3)],
 'play() should launch player for song');

 $fail = 1;
 throws_ok { $song->play() } qr/Couldn't launch xmms for
RomanceMe.mp3/,
 '... throwing exception if launching fails';
 }

Run it with prove:

 $ prove songplayer.t
 songplayer....ok

 All tests successful.
 Files=1, Tests=11, 0 wallclock secs (0.10 cusr + 0.01 csys
= 0.11 CPU)

What just happened?
Instead of launching xmms to play the song, the test overrode the system()
operator with a normal Perl subroutine. How did that happen?

NOTE
The forward declaration could take place at the top of the test file; it’s in the play() test for clarity.

The subs pragma allows you to make forward declarations of subroutines. It
tells Perl to expect user-defined subroutines of the given names. This
changes how Perl reacts when it encounters those names. In effect, this
snippet:

 use subs 'system';

hides the built-in system() in favor of a user-defined system(), even though
the definition happens much later as the test runs!

The test file performs one trick in using the subs pragma. It changes to the
SongPlayer package to execute the pragma there, and then changes back to
the main package. The other interesting part of the code is the definition of
the new system() function:

 my $fail = 0;
 my @args;

 *SongPlayer::system = sub
 {
 @args = @_;
 return $fail;
 };

It’s a closure, closing over the $fail and @args variables. Both the
enclosing block and the function can access the same lexical variables.
Setting $fail in the block changes what the function will return. The
mocked system() function sets @args based on the arguments it receives.
Together, they allow the test to check what play() passes to system() and to
verify that play() does the right thing based on the dummied-up return
value of the mocked function.

Mocking system() allows the test to force a failure without the tester having
to figure out a failure condition that will always run on every supported
platform.

What about...
Q: This seems invasive. Is there another way to do it without overriding
system()?

A: You can’t easily undo overriding. If you cannot isolate the scope of the
overriding well—whether in a block or a separate test file, this can be
troublesome.

There’s an alternative, in this case. Save the following test file as
really_play.t:

 #!perl

 use strict;
 use warnings;

 use lib 'lib';

 use Test::More tests => 5;
 use Test::Exception;

 my $module = 'SongPlayer';
 use_ok($module) or exit;

 my $song = $module->new(song => '77s_OneMoreTime.ogg',
 player => 'mpg321');

 $song->song('pass.pl');
 is($song->song(), 'pass.pl',
 'song() should update song member, if set');

 $song->player($^X);
 is($song->player(), $^X,
 'player() should update player member, if set');

 lives_ok { $song->play() } 'play() should launch program and
live';

 $song->song('fail.pl');
 dies_ok { $song->play() }
 'play() should croak if program launch fails';

NOTE
The special variable $^X holds the path to the currently executing Perl binary. See perldoc perlvar.

Instead of setting the song and player to an actual song and player, this code
uses the currently executing Perl binary and sets the song to either pass.pl
or fail.pl. Save this code to pass.pl:

 exit 0;

and this code as fail.pl:

 exit 1;

Now when play() calls system(), it runs the equivalent of the command
perl pass.pl or perl fail.pl, checking the command’s exit code.

This kind of testing is more implicit; if something goes wrong, it can be
difficult to isolate the invalid assumption. Was the name of the file wrong?
Was its exit value wrong? However, redefining part of Perl can be
treacherous, even if you put the overriding code in its own test file to
minimize the damage of violating encapsulation. Using fake programs is
gentler and may have fewer unexpected side effects.

Both approaches are appropriate at different times. When you have precise
control of how your code communicates with the outside world, it’s often
simpler to run fake programs through the system() command, for example.

When it’s tedious to exercise all of the necessary behavior of the external
program or resource, mocking is easier.

Mocking Modules
Sometimes two or more pieces of code play very nicely together. This is
great—until you want to test them in isolation. While it’s good to write
testable code, you shouldn’t have to go through contortions to make it
possible to write tests. Sometimes it’s okay for your tests to poke through
the abstractions, just a little bit, to make sure that your code works the way
you think it ought to work.

Being a little bit tricky in your test code—in the proper places and with the
proper precautions—can make both your code and your tests much simpler
and easier to test.

How do I do that?
Suppose that you want to search for types of links in HTML documents.
You’ve defined a class, LinkFinder, whose objects contain the HTML to
search as well as an internal parser object that does the actual HTML
parsing. For convenience, the class uses the LWP::Simple library to fetch
HTML from a web server when provided a bare URI.

Save the following code as lib/LinkFinder.pm:

 package LinkFinder;

 use URI;
 use LWP::Simple ();
 use HTML::TokeParser::Simple;

 sub new
 {
 my ($class, $html) = @_;
 my $uri = URI->new($html);

 if ($uri->scheme())
 {
 $html = LWP::Simple::get($uri->as_string());
 }

 my $self = bless { html => $html }, $class;
 $self->reset();
 }

 sub parser

 {
 my $self = shift;
 return $self->{parser};
 }

 sub html
 {
 my $self = shift;
 return $self->{html};
 }

 sub find_links
 {
 my ($self, $uri) = @_;
 my $parser = $self->parser();

 my @links;

 while (my $token = $parser->get_token())
 {
 next unless $token->is_start_tag('a');
 next unless $token->get_attr('href') =~ /\Q$uri\E/;
 push @links, $self->find_text();
 }

 return @links;
 }

 sub find_text
 {
 my $self = shift;
 my $parser = $self->parser();

 while (my $token = $parser->get_token())
 {
 next unless $token->is_text();
 return $token->as_is();
 }

 return;
 }

 sub reset
 {
 my $self = shift;
 my $html = $self->html();
 $self->{parser} = HTML::TokeParser::Simple->new(string
=> $html);

 return $self;

 }

 1;

Save the following test file as findlinks.t:

 #!perl

 use strict;
 use warnings;

 use lib 'lib';

 use Test::More tests => 11;
 use Test::MockModule;

 my $module = 'LinkFinder';
 use_ok($module) or exit;
 my $html = do { local $/; <DATA> };

 my $vanity = $module->new($html);
 isa_ok($vanity, $module);
 is($vanity->html(), $html, 'new() should allow HTML passed
in from string');

 {
 my $uri;
 my $lwp = Test::MockModule->new('LWP::Simple');
 $lwp->mock(get => sub ($) { $uri = shift; $html });

 $vanity = $module->new(
'http://www.example.com/somepage.html');
 is($vanity->html(), $html, '... or from URI if passed'
);
 is($uri, 'http://www.example.com/somepage.html',
 '... URI passed into constructor');
 }

 my @results = $vanity->find_links('http');
 is(@results, 3, 'find_links() should find all matching
links');
 is($results[0], 'one author', '... in order'
);
 is($results[1], 'another author', '... of appearance'
);
 is($results[2], 'a project', '... in document'
);

 $vanity->reset();
 @results = $vanity->find_links('perl');
 is(@results, 1, 'reset() should reset parser'

);
 is($results[0], 'a project', '... allowing more link
finding');

 _ _DATA_ _
 <html>
 <head><title>some page</title>
 <body>
 <p>one author</p>
 <p>another author</p>
 <p>a project</p>
 </body>

NOTE
The test declares $uri outside of the mocked subroutine to make the variable visible outside of the
subroutine.

NOTE
See Special Literals in perldoc perldata to learn about __DATA__.

Run it with prove:

 $ prove findlinks.t
 findlinks....ok
 All tests successful.
 Files=1, Tests=11, 0 wallclock secs (0.21 cusr + 0.02 csys
= 0.23 CPU)

What just happened?
When LinkFinder creates a new object, it creates a new URI object from the
$html parameter. If $html contains actual HTML, the URI object won’t have
a scheme. If, however, $html contains a URL to an HTTP or FTP site
containing HTML, it will have a scheme. In that case, it uses LWP::Simple
to fetch the HTML.

NOTE
The anonymous subroutine has a prototype to match that of LWP::Simple::get(). Perl will warn
about a prototype mismatch without it. You only need a prototype if the subroutine being mocked
has one.

You can’t rely on having a reliable network connection every time you want
to run the tests, nor should you worry that the remote site will be down or
that someone has changed the HTML and your tests will fail. You could run
a small web server to test against, but there’s an easier solution.

The Test::MockModule module takes most of the tedium out of overriding
subroutines in other packages (see "Overriding Live Code,” later in this
chapter). Because LinkFinder uses LWP::Simple::get() directly, without
importing it, the easiest option is to mock get() in the LWP::Simple
package.

The test creates a new Test::MockModule object representing LWP::Simple.
That doesn’t actually change anything; only the call to mock() does. The
two arguments passed to mock() are the name of the subroutine to override
—get, in this case—and an anonymous subroutine to use for the overriding.

Within the new scope, all of LinkFinder’s calls to LWP::Simple::get()
actually call the anonymous subroutine instead, storing the argument in
$uri and returning the example HTML from the end of the test file.

NOTE
What if you decide to import get() in LinkFinder after all? Pass ‘LinkFinder’ to the
Test::MockModule constructor instead.

The rest of the test is straightforward.

What about...
Q: What if you write mostly object-oriented code? How do you mock
classes and objects?

A: See "Mocking Objects,” next.

Mocking Objects
Some programs rely heavily on the use of objects, eschewing global

variables and functions for loosely-coupled, well-encapsulated, and strongly

polymorphic designs. This kind of code can be easier to maintain and

understand—and to test. Well-factored code that adheres to intelligent

interfaces between objects makes it possible to reuse and substitute

equivalent implementations—including testing components.

This lab demonstrates how to create and use mock objects to test the inputs

and outputs of code.

How do I do that?
The following code defines an object that sends templated mail to its

recipients. Save it as lib/MailTemplate.pm:

 package MailTemplate;

 use strict;
 use Email::Send 'SMTP';

 sub new
 {
 my ($class, %args) = @_;
 bless \%args, $class;
 }

 BEGIN
 {
 no strict 'refs';

 for my $accessor (qw(message recipients sender
sender_address server))
 {
 *{ $accessor } = sub
 {
 my $self = shift;
 return $self->{$accessor};
 };
 }
 }

 sub add_recipient
 {
 my ($self, $name, $address) = @_;

 my $recipients = $self->recipients();
 $recipients->{$name} = $address;
 }

 sub deliver
 {
 my $self = shift;
 my $recipients = $self->recipients();

 while (my ($name, $address) = each %$recipients)
 {
 my $message = $self->format_message($name, $address
);
 send('SMTP', $message, $self->server());
 }
 }

 sub format_message
 {
 my ($self, $name, $address) = @_;

 my $message = $self->message();
 my %data =
 (
 name => $name,
 address => $address,
 sender => $self->sender(),
 sender_address => $self->sender_address(),
);

 $message =~ s/{(\w+)}/$data{$1}/g;
 return $message;
 }

 1;

NOTE
The BEGIN trick here is like using AUTOLOAD to generate accessors, except that it runs at
compile time for only those accessors specified.

Using this module is easy. To send out personalized mail to several

recipients, create a new object, passing the name of your SMTP server, your

name, your address, a templated message, and a hash of recipient names

and addresses.

Testing this module, on the other hand, could be tricky; it uses Email::Send

(specifically Email::Send::SMTP) to send messages. You don’t want to rely

on having a network connection in place, nor do you want to send mail to

some poor soul every time someone runs the tests, especially while you

develop them.

What’s the answer?

Save the following test code to mailtemplate.t:

 #!perl

 use strict;
 use warnings;

 use Test::More tests => 23;
 use Test::MockObject;

 use lib 'lib';

 $INC{'Net/SMTP.pm'} = 1;
 my $module = 'MailTemplate';
 my $message = do { local $/; <DATA> };

 use_ok($module) or exit;

 can_ok($module, 'new');
 my $mt = $module->new(
 server => 'smtp.example.com',
 sender => 'A. U. Thor',
 message => $message,
 sender_address => 'author@example.com',
 recipients => { Bob => 'bob@example.com' },
);
 isa_ok($mt, $module);

 can_ok($mt, 'server');
 is($mt->server(), 'smtp.example.com',
 'server() should return server set in constructor');

 can_ok($mt, 'add_recipient');
 $mt->add_recipient(Alice => 'alice@example.com');

 can_ok($mt, 'recipients');
 is_deeply($mt->recipients(),
 { Alice => 'alice@example.com', Bob =>
'bob@example.com' },
 'recipients() should return all recipients');

 can_ok($mt, 'deliver');

 my $smtp = Test::MockObject->new();

 $smtp->fake_module('Net::SMTP', new => sub { $smtp });
 $smtp->set_true(qw(mail to data -quit));
 $mt->deliver();

 my %recipients =
 (
 Alice => 'alice@example.com',
 Bob => 'bob@example.com',
);

 while (my ($name, $address) = each %recipients)
 {
 my ($method, $args) = $smtp->next_call();
 is($method, 'mail', 'deliver() should
open a mail');
 is($args->[1], 'author@example.com','... setting the
From address');

 ($method, $args) = $smtp->next_call();
 is($method, 'to', '... then the To
address');
 is($args->[1], $address, '... for the
recipient');

 ($method, $args) = $smtp->next_call();
 is($method, 'data', '... sending the
message');
 like($args->[1], qr/Hello, $name/, '... greeting the
recipient');
 like($args->[1], qr/Love,.A. U. Thor/s,
 '... and signing sender name');
 }

 _ _DATA_ _
 To: {address}
 From: {sender_address}
 Subject: A Test Message

 Hello, {name}!

 You won't actually receive this message!

 Love,
 {sender}

NOTE
Don’t make assumptions about hash ordering; you’ll have random test failures when you least
expect them. Sort all data retrieved from hashes if the order matters to you.

Then run it:

 $ prove mailtemplate.t
 mailtemplate....ok
 All tests successful.
 Files=1, Tests=23, 1 wallclock secs (0.16 cusr + 0.02 csys
= 0.18 CPU)

What just happened?
The test file starts with a curious line:

 $INC{'Net/SMTP.pm'} = 1;

NOTE
To prevent MailTemplate from loading Email:: Send, the code to set %INC must occur before the
use_ok() call. If you call use_ok() in a BEGIN block, set %INC in a BEGIN block too.

This line prevents the module from (eventually) loading the Net::SMTP

module, which Email::Send::SMTP uses internally. %INC is a global variable

that contains entries for all loaded modules. When Perl loads a module,

such as Test::More, it converts the module name into a Unix file path and

adds it to %INC as a new key. The next time Perl tries to load a file with that

name, it checks the hash. If there’s an entry, it refuses to load the file again.

NOTE
%INC has a few other complications. See perldoc perlvar for more details.

If Perl doesn’t actually load Net::SMTP, where does the code for that

package come from? Test::MockObject provides it:

 my $smtp = Test::MockObject->new();
 $smtp->fake_module('Net::SMTP', new => sub { $smtp });

The first line creates a new mock object. The second tells Test::MockObject

to insert a new function, new(), into the Net::SMTP namespace. Because

Email::Send::SMTP uses Net::SMTP::new() to retrieve an object and

assumes that it has received a Net::SMTP object, this is the perfect place to

substitute a mock object for the real thing.

Of course, when Email::Send::SMTP tries to call methods on the mock

object, it won’t do the right thing unless the mock object mocks those

methods. Test::MockObject has several helper methods that mock methods

on the object. set_true() defines a list of methods with the given names:

NOTE
To prevent MailTemplate from loading Email:: Send, the code to set %INC must occur before the
use_ok () call. If you call use_ok () in a BEGIN block, set %INC in a BEGIN block too.

 $smtp->set_true(qw(mail to data -quit));

Each method mocked this way returns a true value. More importantly, they

all log their calls by default, unless you prefix their names with the minus

character (-). Now Email::Send::SMTP can call mail(), to(), data(), and

quit(), and $smtp will log information about the calls for all but the last.

Logging is important if you want to see if the module being tested sends out

the data you expect. In this case, it’s important to test that the message goes

to the correct recipients from the correct sender, with the template filled out

appropriately. Use next_call() to retrieve information about the logged

calls:

 my ($method, $args) = $smtp->next_call();
 is($method, 'mail', 'deliver() should open
a mailer');
 is($args->[1], 'author@example.com', '... setting the From
address');

In list context, next_call() retrieves the name of the next method called, as

well as an array reference containing the arguments to the call. These two

tests check that the next method called is the expected one and that the first

argument, after the invocant, of course, is the expected From address.

What about...
Q: This test code seems to depend on the order of the calls within

Email::Send::SMTP. Isn’t this fragile? What if changes to the module break

the tests?

A: That’s one drawback of mock objects; they rely on specific knowledge

of the internals of the code being tested. Instead of testing merely that a

piece of code does the right thing, sometimes they go further to test how it

does what it does.

When possible, designing your code to be more testable will make it more

flexible. MailTemplate would be easier to test if its constructor took an

object that could send mail. The test could then pass a mock object in

through the new() call and perform its checks on that.

However, the real world isn’t always that convenient. Sometimes testing a

few parts of a large application with mock objects is the best way to test

every part in isolation.

Q: I looked at the Test::MockObject documentation and still don’t

understand how to use it. What am I missing?

A: See “A Test::MockObject Illustrated Example”

(http://www.perl.com/pub/a/2002/07/10/tmo.html) and “Perl Code Kata:

Mocking Objects”

(http://www.perl.com/pub/a/2005/04/07/mockobject_kata.html) for more

examples.

Q: Do I have to mock all of an object? I only need to change a small part of

it.

A: Good thinking. See "Partially Mocking Objects,” next.

http://www.perl.com/pub/a/2002/07/10/tmo.html
http://www.perl.com/pub/a/2005/04/07/mockobject_kata.html

Partially Mocking Objects
Mock objects are useful because they give so much control over the testing

environment. That great power also makes them potentially dangerous. You

may write fantastic tests that appear to cover an entire codebase only to

have the code fail in real situations when the unmocked world behaves

differently.

Sometimes it’s better to mock only part of an object, using as much real

code as possible. When you have well-designed and well-factored classes

and methods, use Test::MockObject::Extends to give you control over tiny

pieces of code you want to change, leaving the rest of it alone.

How do I do that?
Consider the design of a computer-controlled jukebox for your music

collection. Suppose that it holds records, CDs, and MP3 files, with a

counter for each item to track popularity. The well-designed jukebox

separates storing individual pieces of music from playing them. It has three

modules: Jukebox, which provides the interface to select and play music;

Library, which stores and retrieves music; and Music, which represents a

piece of music.

The Jukebox class is simple:

 package Jukebox;

 use strict;
 use warnings;

 sub new
 {
 my ($class, $library) = @_;
 bless { library => $library }, $class;
 }

 sub library
 {
 my $self = shift;
 return $self->{library};
 }

 sub play_music
 {

 my ($self, $medium, $title) = @_;

 my $class = ucfirst(lc($medium));
 my $library = $self->library();
 my $music = $library->load($class,
$title);
 return unless $music;

 $music->play();
 $music->add_play();

 $library->save($music, $title, $music);
 }

 1;

Library is a little more complicated:

 package Library;

 use strict;
 use warnings;

 use Carp 'croak';
 use File::Spec::Functions qw(catdir catfile);

 sub new
 {
 my ($class, $path) = @_;
 bless \$path, $class;
 }

 sub path
 {
 my $self = shift;
 return $$self;
 }

 sub load
 {
 my ($self, $type, $id) = @_;
 my $directory = $self->find_dir($type);
 my $data = $self->read_file($directory,
$id);
 bless $data, $type;
 }

 sub save
 {
 my ($self, $object, $id) = @_;
 my $directory = $self->find_dir($object-

>type());
 $self->save_file($directory, $id, $object->data());
 }

 sub find_dir
 {
 my ($self, $type) = @_;
 my $path = $self->path();
 my $directory = catdir($path, $type);
 croak("Unknown directory '$directory'") unless -d
$directory;
 return $directory;
 }

 sub read_file { }
 sub save_file { }

 1;

Finally, the Music class is simple:

 package Music;

 use strict;
 use warnings;

 BEGIN
 {
 @Cd::ISA = 'Music';
 @Mp3::ISA = 'Music';
 @Record::ISA = 'Music';
 }

 sub new
 {
 my ($class, $title) = @_;
 bless { title => $title, count => 0 }, $class;
 }

 sub add_play
 {
 my $self = shift;
 $self->{count}++;
 }

 sub data
 {
 my $self = shift;
 return \%$self;
 }

 sub play { }
 sub type { ref($_[0]) }

 1;

Given all of this code, one way to test Jukebox is to mock only a few

methods of Library: find_dir(), read_file(), and save_file().

Save the following file as jukebox.t:

 #!perl

 use strict;
 use warnings;

 use Library;
 use Music;

 use Test::More tests => 13;
 use Test::Exception;
 use Test::MockObject::Extends;

 my $lib = Library->new('my_files');
 my $mock_lib = Test::MockObject::Extends->new($lib);

 my $module = 'Jukebox';
 use_ok($module) or exit;

 can_ok($module, 'new');
 my $jb = $module->new($mock_lib);
 isa_ok($jb, $module);

 can_ok($jb, 'library');
 is($jb->library(), $mock_lib,
 'library() should return library set in constructor');

 can_ok($jb, 'play_music');

 $mock_lib->set_always(-path => 'my_path');
 throws_ok { $jb->play_music('mp3', 'Romance Me') }
qr/Unknown directory/,
 'play_music() should throw exception if it cannot find
directory';

 $mock_lib->set_always(-find_dir => 'my_directory');
 $mock_lib->set_always(read_file => { file => 'my_file' });
 $mock_lib->set_true('save_file');

 lives_ok { $jb->play_music('CD', 'Films For Radio') }
 '... but no exception if it can find it';

 $mock_lib->called_ok('read_file');
 my ($method, $args) = $mock_lib->next_call(2);
 is($method, 'save_file', 'play_music() should also
save file');
 is($args->[1], 'my_directory', '... saving to the proper
directory');
 is($args->[2], 'Films For Radio', '... with the proper id'
);
 is($args->[3]{count}, 1, '... and the proper count'
);

Run the test with prove. All tests should pass.

What just happened?
The code for mocking objects should look familiar (see "Mocking Objects,”

earlier in this chapter), but the code to create the mock object is different. In

particular, this test loads the Library module and instantiates an actual

object before passing it to the Test::MockObject::Extends constructor.

NOTE
Note which mocked methods the test logs and which methods it doesn’t. This is a useful technique
when you want to test calls to some methods but not others.

Any methods called on the mock object that it doesn’t currently mock will

pass through to the object being mocked. That is, without adding any other

methods to it, calling save() or find_dir() on $mock_lib will actually call

the real methods from Library. That’s why the first call to play_music()

throws an exception: the directory name created in Library::find_dir()

doesn’t exist.

The test then mocks find_dir() so that subsequent tests will pass. Next it

mocks the read_file() and save_file() methods.

Because Library has put all of the actual file-handling code in three

methods, it’s easy to test that Jukebox does the right thing without worrying

about reading or writing files that may not exist or that the test may not

have permission to access.

NOTE
When testing Music and its subclasses, it might be useful to mock play() too, depending on its
implementation.

What about...
Q: How can you ensure that loading and saving work correctly?

A: That’s important, too, but that belongs in the tests for Library. This test

exercises Jukebox; it interacts with Library only as far as Jukebox must use

the Library interface appropriately.

Using mock objects is still somewhat fragile. In this example, if someone

changes the interface of the methods in Library, the mock object may need

to change. However, mocking only a few, small pieces of a well-designed

object reduces the coupling between the mock object and the original

object. This makes tests more robust.

Overriding Live Code
Plenty of useful modules do their work procedurally, without the modularity of functions and

objects. Many modules, written before object orientation became popular, use package

variables to control their behavior. To test your code fully, sometimes you have to reach

inside those packages to change their variables. Tread lightly, though. Tricky testing code is

harder to write and harder to debug.

How do I do that?
Suppose that you have a simple logging package. Its single subroutine, log_message(), takes

a message and logs it to a filehandle. It also adds a time and date stamp to the start of the

message and information about the function’s caller to the end, if two package global

variables, $REPORT_TIME and $REPORT_CALLER, are true.

Save the following code to lib/Logger.pm:

 package Logger;

 use strict;

 our $OUTPUT_FH = *STDERR;
 our $REPORT_TIME = 1;
 our $REPORT_CALLER = 1;

 sub log_message
 {
 my ($package, $file, $line) = caller();
 my $time = localtime();

 my $message = '';
 $message .= "[$time] " if $REPORT_TIME;
 $message .= shift;
 $message .= " from $package:$line in $file"
 if $REPORT_CALLER;
 $message .= "\n";

 write_message($message);
 }

 sub write_message
 {
 my $message = shift;
 print $OUTPUT_FH $message;
 }

 1;

Fortunately, the module is simple enough, so it’s straightforward to test. The difficult part is

figuring out how to capture the output from write_message(). You could test both functions

at the same time, but it’s easier to test features in isolation, both to improve your test

robustness and to reduce complications.

Save the following code to log_message.t:

 #!perl

 use strict;
 use warnings;

 use lib 'lib';

 use Test::More tests => 6;
 use Test::MockModule;

 my $module = 'Logger';
 use_ok($module) or exit;

 can_ok($module, 'log_message');

 {
 local $Logger::REPORT_TIME = 0;
 local $Logger::REPORT_CALLER = 0;

 my $message;
 my $logger = Test::MockModule->new('Logger');
 $logger->mock(write_message => sub { $message = shift });

 Logger::log_message('no decoration');
 is($message, "no decoration\n",
 'log_message() should not add time or caller unless requested');

 $Logger::REPORT_TIME = 1;
 Logger::log_message('time only');
 (my $time = localtime()) =~ s/:\d+ /:\\d+ /;
 like($message, qr/^\[$time\] time only$/,
 '... adding time if requested');

 $Logger::REPORT_CALLER = 1;
 my $line = _ _LINE_ _ + 1;
 Logger::log_message('time and caller');
 like($message, qr/^\[$time\] time and caller from main:$line in 0/,
 '... adding time and caller, if both requested');

 $Logger::REPORT_TIME = 0;
 $line = _ _LINE_ _ + 1;
 Logger::log_message('caller only');
 like($message, qr/^caller only from main:$line in 0/,
 '... adding caller only if requested');
 }

Run it with prove:

 $ prove log_message.t
 log_message....ok
 All tests successful.
 Files=1, Tests=6, 0 wallclock secs (0.10 cusr + 0.00 csys = 0.10 CPU)

What just happened?
The first interesting section of code, in the block following can_ok(), localizes the two

package variables from Logger, $REPORT_TIME and $REPORT_CALLER.

NOTE
See “Temporary Values via local()” in perldoc perlsub for more details on localizing global symbols. This is a big topic
related to Perl’s inner workings.

The benefit of local() is that it allows temporary values for global symbols, even those from

other packages. Outside of that scope, the variables retain their previous values. Though it’s

easy to assign to them without localizing them, it’s nicer to encapsulate those changes in a

new scope and let Perl restore their old values. Inside the scope of the localized variables,

the test uses Test::MockModule’s mock() method to install a temporary write_message() only

for the duration of the lexical scope.

With the new write_message() temporarily in place, the message that log_message() creates

will end up in the $message variable, which makes it easy to test the four possible

combinations of reporting values. The rest of the code is straightforward, with two

exceptions.

Note how the regular expression changes the output of localtime() to make the test less

sensitive about timing issues; the test shouldn’t fail if it happens to run just at the boundary of

a second. As it is, there is still a small race condition if the minute happens to turn over, but

the potential for failure is much smaller now.

The other new piece is the use of the _ _LINE_ _ directive and the special variable $0 to

verify that log_message() reports the proper calling line number and filename.

What about...
Q: What’s the best way to test write_message()?

A: write_message() performs two different potential actions. First, it writes to the STDERR

filehandle by default. Second, it writes to the filehandle in $OUTPUT_FH if someone has set it.

The Test::Output module from the CPAN is useful for both tests.

Save the following code to write_message.t:

 #!perl

 use strict;
 use warnings;

 use lib 'lib';

 use Test::More tests => 3;
 use Test::Output;
 use Test::Output::Tie;

 my $module = 'Logger';
 use_ok($module) or exit;

 stderr_is(sub { Logger::write_message('To STDERR!') }, 'To STDERR!',
 'write_message() should write to STDERR by default');

 {
 local *Logger::OUTPUT_FH;

 my $out = tie *Logger::OUTPUT_FH, 'Test::Output::Tie';
 $Logger::OUTPUT_FH = *Logger::OUTPUT_FH;

 Logger::write_message('To $out!');
 is($out->read(), 'To $out!', '... or to $OUTPUT_FH, if set');
 }

Run it with prove:

 $ prove write_message.t
 write_message....ok
 All tests successful.
 Files=1, Tests=3, 0 wallclock secs (0.11 cusr + 0.00 csys = 0.11
 CPU)

Test::Output’s stderr_is() is handy for testing Logger’s default behavior. Its only quirk is

that its first argument must be an anonymous subroutine. Otherwise, it’s as simple as can be.

Testing that write_message() prints to other filehandles is only slightly more complex. As

with the tests for write_message(), the goal is to capture the output in a variable.

Test::Output uses a module called Test::Output::Tie internally to do exactly that. It ties a

filehandle that captures all data printed to it and returns this data when you call its read()

method.

NOTE
Tying a variable with tie() is like subclassing a module; it presents the same interface but performs different behavior. See
perldoc perltie to learn more.

Overriding Operators Everywhere
Overriding Perl operators locally is an important skill to know. Sometimes

it’s not sufficient, though. Consider the case of code that calls exit()

occasionally. That’s anathema to testing, but you don’t have to give up on

unit testing altogether. If you can isolate the affected code to a few places in

the program, you can test that code in isolation, redefining the systemwide

exit() function to do what you want.

How do I do that?
Take the example of a module that enforces password protection for users.

Save the following code as PasswordKeeper.pm in your library directory:

 package PasswordKeeper;

 sub new
 {
 my ($class, $username) = @_;
 my $password = $class->encrypt($username);
 bless
 {
 user => $username,
 tries => 0,
 password => $password,
 }, $class;
 }

 sub verify
 {
 my ($self, $guess) = @_;

 return 1 if $self->encrypt($guess) eq $self->
{password};

 $self->{tries}++;
 exit if $self->{tries} = = 3;

 return 0;
 }

 sub encrypt
 {
 my ($class, $password) = @_;
 return scalar reverse $password;
 }

 1;

NOTE
Don’t use this encryption technique for data you care about. See the Crypt namespace on the
CPAN for better options.

That exit() looks a little dangerous, but at least it occurs in only one

method. Save the following test file as pkeeper_exit.t:

 #!perl

 use strict;
 use warnings;

 use lib 'lib';

 use Test::More tests => 3;

 my $exited;
 BEGIN { *CORE::GLOBAL::exit = sub { $exited++ } };

 my $module = 'PasswordKeeper';
 use_ok($module) or die("Could not load $module");

 my $mel = $module->new('Melanie');
 isa_ok($mel, $module);

 $mel->verify($_) for qw(buffy babycat milkyway);
 is($exited, 1, 'verify() should exit if it receives three
bad passwords');

NOTE
Assume that another test file exercises PasswordKeeper’s non-exiting behavior.

Run it with prove:

 $ prove pkeeper_exit.t
 pkeeper_exit...ok
 All tests successful.
 Files=1, Tests=3, 0 wallclock secs (0.07 cusr + 0.02 csys
= 0.09 CPU)

What just happened?

PasswordKeeper works by taking a username and encrypting it to make a

password when it creates a new object. The verify() method takes a

potential password, encrypts it, and compares it against the stored

password. If they match, the method returns true. Otherwise, it increases a

counter of failed attempts and exits the program if someone has tried three

unsuccessful passwords.

NOTE
Read perldoc perlsub and perldoc perlvar to learn more about CORE::GLOBAL. This is very
powerful, so use it with care.

That exiting is important behavior to test. The test file starts by defining

exit() in the special CORE::GLOBAL namespace. That overrides exit()

everywhere, not just in main, where the code of the test file lives, or in

PasswordKeeper. The new exit() increments the $exited variable, so the

third test in the file can check that PasswordKeeper called exit() once for

three failed password attempts.

What about...
Q: What’s the advantage of overriding something everywhere instead of in

a small scope?

A: You might not be able to localize all of the calls to exit() (or system(),

die(), etc.) into one place in one module of the code you’re testing. In those

situations, overriding the troublesome operator in a single test file that

exercises the behavior can turn previously difficult code into testable code.

Make this test file small, so that it exercises only the code paths that cause

the exiting. This will minimize the chances of unexpected behavior from

your global overriding. If you can’t modify the code you’re testing to make

it easier to test, at least you can encapsulate the tricky code into individual

test files.

Chapter 6. Testing Databases
Many programs need to work with external data. Given Perl’s powerful and

useful modules for database access, many programs use relational

databases, simple flat files, and everything in between. It’s in those places,

where the real world and your program interact, that you need the most

tests.

Fortunately, the same testing tools and techniques used elsewhere make

testing databases and database access possible. The labs in this chapter

explore some of the scenarios that you may encounter with applications that

rely on external data storage and provide ideas and solutions to make them

testable and reliable.

Shipping Test Databases
Many modern applications store data in databases for reasons of security,

abstraction, and maintainability. This is often good programming, but it

presents another challenge for testing; anything outside of the application

itself is harder to test. How do you know how to connect to the database?

How do you know which database the user will use?

Fortunately, Perl’s DBI module, a few testing tools, and a little cleverness

make it possible to be confident that your code does what it should do both

inside the database and out.

Often, it’s enough to run the tests against a very simple database full of

testable data. DBI works with several database driver modules that are small

and easy to use, including DBD::CSV and DBD::AnyData. The driver and DBI

work together to provide the same interface that you’d have with a fully

relational database system. If you’ve abstracted away creating and

connecting to the database in a single place that you can control or mock,

you can create a database handle in your test and make the code use that

instead of the actual connection.

How do I do that?
Imagine that you store user information in a database. The Users module

creates and fetches user information from a single table; it is a factory for

User objects. Save the following code in your library directory as Users.pm:

NOTE
For a better version of the Users module, see Class::DBI from the CPAN.

 package Users;

 use strict;
 use warnings;

 my $dbh;

 sub set_db
 {
 my ($self, $connection) = @_;
 $dbh = $connection;
 }

 sub fetch
 {
 my ($self, $column, $value) = @_;

 my $sth = $dbh->prepare(
 "SELECT id, name, age FROM users WHERE $column = ?"
);

 $sth->execute($value);

 return unless my ($id, $name, $age) = $sth-
>fetchrow_array();
 bless { id => $id, name => $name, age => $age, _db =>
$self }, 'User';
 }

 sub create
 {
 my ($self, %attributes) = @_;
 my $sth = $dbh->prepare(
 'INSERT INTO users (name, age) VALUES (?, ?)'
);

 $sth->execute(@attributes{qw(name age)});
 $attributes{id} = $dbh->last_insert_id(undef, undef,
'users', 'id');
 bless \%attributes, 'User';
 }

 package User;

 our $AUTOLOAD;

 sub AUTOLOAD
 {
 my $self = shift;
 my ($member) = $AUTOLOAD =~ /::(\w+)\z/;
 return $self->{$member} if exists $self->{$member};
 }

 1;

NOTE
A better—if longer—version of this code would add a constructor to the Users object and set a
per-object database handle.

Note the use of the set_db() function at the start of User. It stores a single

database handle for the entire class.

The Users package is simple; it contains accessors for the name, age, and id

fields associated with the user. The code itself is just a thin layer around a

few database calls. Testing it should be easy. Save the following test file as

users.t:

 #!perl

 use strict;
 use warnings;

 use DBI;

 my $dbh = DBI->connect('dbi:SQLite:dbname=test_data');
 {
 local $/ = ";\n";
 $dbh->do($_) while <DATA>;
 }

 use Test::More tests => 10;

 my $module = 'Users';
 use_ok($module) or exit;

 can_ok($module, 'set_db');
 $module->set_db($dbh);

 can_ok($module, 'fetch');
 my $user = $module->fetch(id => 1);

 isa_ok($user, 'User');
 is($user->name(), 'Randy', 'fetch() should fetch proper user
by id');

 $user = $module->fetch(name => 'Ben');
 is($user->id(), 2, '... or by name');

 can_ok($module, 'create');
 $user = $module->create(name => 'Emily', age => 23);
 isa_ok($user, 'User');
 is($user->name(), 'Emily', 'create() should create and
return new User');
 is($user->id(), 3, '... with the correct id');

 _ _END_ _
 BEGIN TRANSACTION;
 DROP TABLE users;
 CREATE TABLE users (
 id int,
 name varchar(25),
 age int
);
 INSERT INTO "users" VALUES(1, 'Randy', 27);
 INSERT INTO "users" VALUES(2, 'Ben', 29);
 COMMIT;

Run it with prove to see:

 $ prove users.t
 users....ok
 All tests successful.
 Files=1, Tests=10, 0 wallclock secs (0.17 cusr + 0.00 csys
= 0.17 CPU)

What just happened?
NOTE

SQLite is a simple but powerful relational database that stores all of its data in a single file.

The test starts off by loading the DBI module and connecting to a SQLite

database with the DBD::SQLite driver. Then it reads in SQL stored at the end

of the test file and executes each SQL command, separated by semicolons,

individually. These commands create a users table and insert some sample

data.

By the time the test calls Users->set_db(), $dbh holds a connection to the

SQLite database stored in test_data. All subsequent calls to Users will use

this handle. From there, the rest of the tests call methods and check their

return values.

What about...
Q: This works great for testing code that uses a database, but what about

code that changes information in the database?

A: Suppose that you want to prove that Users::create() actually inserts

information into the database. See Testing Database Data,” next.

Q: Only simple SQL queries are compatible across databases. What if my

code uses unportable or database-specific features?

A: This technique works for the subset of SQL and database use that’s

portable across major databases. If your application uses things such as

additions to SQL, special schema types, or stored procedures, using

DBD::SQLite or DBD::AnyData may be inappropriate. In that case, testing

against an equivalent database with test data or mocking the database is

better. (See Using Temporary Databases" and Mocking Databases,” later in

this chapter.)

Testing Database Data
If your application is the only code that ever touches its database, then

testing your abstractions is easy: test what you can store against what you

can fetch. However, if your application uses the database to communicate

with other applications, what’s in the database is more important than what

your code retrieves from it. In those cases, good testing requires you to

examine the contents of the database directly.

Suppose that the Users module from Shipping Test Databases" is part of a

larger, multilanguage system for managing users in a company. If it were

the only code that dealt with the underlying database, the existing tests there

would suffice—the internal representation of the data can change as long as

the external interface stays the same. As it is, other applications will rely on

specific details of the appropriate tables and, for Users to work properly, it

must conform to the expected structure.

Fortunately, Test::DatabaseRow provides tests for common database-related

tasks.

How do I do that?
Save the following file as users_db.t:

 #!perl

 use lib 'lib';

 use strict;
 use warnings;

 use DBI;

 my $dbh = DBI->connect('dbi:SQLite:dbname=test_data');
 {
 local $/ = ";\n";
 $dbh->do($_) while <DATA>;
 }

 use Test::More tests => 4;
 use Test::DatabaseRow;

 my $module = 'Users';
 use_ok($module) or exit;

 $module->set_db($dbh);
 $module->create(name => 'Emily', age => 23);

 local $Test::DatabaseRow::dbh = $dbh;

 row_ok(
 sql => 'SELECT count(*) AS count FROM users',
 tests => [count => 3],
 label => 'create() should insert a row',
);

 row_ok(
 table => 'users',
 where => [name => 'Emily', age => 23],
 results => 1,
 label => '... with the appropriate data',
);

 row_ok(
 table => 'users',
 where => [id => 3],
 tests => [name => 'Emily', age => 23],
 label => '... and a new id',
);

 _ _END_ _
 BEGIN TRANSACTION;
 DROP TABLE users;
 CREATE TABLE users (
 id int,
 name varchar(25),
 age int
);
 INSERT INTO "users" VALUES(1, 'Randy', 27);
 INSERT INTO "users" VALUES(2, 'Ben', 29);
 COMMIT;

Run it with prove:

 $ prove users_db.t
 users_db....ok 1/0# Failed test (users_db.t at line 39)
 # No matching row returned
 # The SQL executed was:
 # SELECT * FROM users WHERE id = '3'
 # on database 'dbname=test_data'
 # Looks like you failed 1 tests of 4.
 users_db....dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 4
 Failed 1/4 tests, 75.00% okay
 Failed Test Stat Wstat Total Fail Failed List of Failed

 users_db.t 1 256 4 1 25.00% 4
 Failed 1/1 test scripts, 0.00% okay. 1/4 subtests failed,
75.00% okay.

NOTE
This is an actual failure from writing the test code. It happens.

Oops.

What just happened?
For some reason, the test failed. Fortunately, Test::DatabaseRow gives

diagnostics on the SQL that failed. Before delving into the failure, it’s

important to understand how to use the module.

Test::DatabaseRow builds on Test::Builder and exports two functions,

row_ok() and not_row_ok(). Both functions take several pieces of data, use

them to build and execute a SQL statement, and test its results. To run the

tests, the module needs a database handle. The localization and assignment

to $Test::DatabaseRow::dbh accomplishes this.

The testing functions accept two different kinds of calls. The first call to

row_ok() passes raw SQL as the sql parameter to execute. This test creates

a user for Emily and checks that there are now three rows in the users table

with the SQL count(*) function. The second argument, tests, is an array

reference of checks to perform against the returned row. In effect, this asks

the question, “Is the count column in this row equal to 3?” Finally, the

label parameter is the test’s description used in its output.

Passing raw SQL to row_ok() isn’t always much of an advantage over

performing the query directly. The technique in the second and third calls to

row_ok is better—Test::DatabaseRow generates a query from the table and

where arguments and sends the query. The table argument identifies the

table to query. The where argument contains an array reference of columns

and values to use to narrow down the query.

NOTE
The where argument is more powerful than these examples suggest. See the documentation for
more details.

There is another difference between the second and the third tests: the

second passes a results argument. Test::DatabaseRow uses this as the

number of results that the query should produce for the test to fail. There

should be only one Emily of age 23 in the database.

Why, then, did the third test fail? Looking at the debug output, the

generated SQL looks correct. Keeping the sample SQLite database around

at the end of the test allows you to use the sqlite program to browse the

data. If you have SQLite installed, run it with:

NOTE
Installing DBD:: SQLite doesn’t install the sqlite program. You have to do that separately.

 $ sqlite3 test_data
 SQLite version 3.0.8
 Enter ".help" for instructions
 sqlite> select * from users;
 1|Randy|27
 2|Ben|29
 |Emily|23

Ahh, this reveals that the row for Emily has an empty id column. Looking

at the table definition again (and searching the SQLite documentation), the

bug is clear. SQLite only generates a unique identifier for INTEGER columns

marked as primary key. Depending on the characteristics of the actual

database, this may be a significant difference in the test database that might

mask an actual bug in the application!

Revise the table definition in users_db.t to:

 CREATE TABLE users (
 id INTEGER primary key,
 name varchar(25),
 age int
);

Then run the tests again:

 $ prove users_db.t
 users_db....ok
 All tests successful.
 Files=1, Tests=4, 0 wallclock secs (0.17 cusr + 0.00 csys
= 0.17 CPU)

What about...
Q: What if there are other differences between the live database and the test

database?

A: Sometimes the differences between a simple database such as SQLite

and a larger database such as PostgreSQL or MySQL are more profound

than changing the column types. In these cases, the technique shown here

won’t work. Fear not, though. The next section, Using Temporary

Databases,” shows another approach.

Q: Is keeping the test database around between invocations a good idea?

A: The DROP TABLE command is useful, but if there’s no database there, it

can cause spurious warnings. Also, it’s bad practice to leave test-created

files lying around for someone else to clean up. Although they’re

sometimes helpful for debugging, most of the time they’re just clutter.

Another option is to delete the test database at the end of the test:

 END
 {
 1 while unlink 'test_data' unless $ENV{TEST_DEBUG};
 }

This will delete the database file completely, even on versioned filesystems,

unless you explicitly ask for debugging. Running the test normally will

leave no trace. To keep the database around, use a command such as:

 $ TEST_DEBUG=1 prove users_db.t

Using Temporary Databases
Some programs rely on very specific database features. For example, a PostgreSQL or

MySQL administration utility needs a deep knowledge of the underlying database. Other

programs, including web content management systems, create their own tables and insert

configuration data into the databases. Testing such systems with DBD::CSV is inappropriate;

you won’t cover enough of the system to be worthwhile.

In such cases, the best way to test your code is to test against a live database—or, at least, a

database containing actual data. If you’re already creating database tables and rows with your

installer, go a step further and create a test database with the same information.

How do I do that?
Assume that you have an application named My::App (saved as lib/My/App.pm) and a file

sql/schema.sql that holds your database schema and some basic data. You want to create both

the live and test database tables during the installation process, and you need to know how to

connect to the database to do so. One way to do this is to create a custom Module::Build

subclass that asks the user for configuration information and installs the database along with

the application.

NOTE
By storing this module in build_ lib/, the normal build process will not install it as it does modules in lib/.

Save the following file to build_lib/MyBuild.pm:

 package MyBuild;

 use base 'Module::Build';

 use DBI;
 use File::Path;
 use Data::Dumper;
 use File::Spec::Functions;

 sub create_config_file
 {
 my $self = shift;
 my $config =
 {
 db_type => $self->prompt('Database type ', 'SQLite'),
 user => $self->prompt('Database user: ', 'root'),
 password => $self->prompt('Database password: ', 's3kr1+'),
 db_name => $self->prompt('Database name: ', 'app_data'),
 test_db => $self->prompt('Test database name: ', 'test_db'),
 };
 $self->notes(db_config => $config);

 mkpath(catdir(qw(lib My App)));

 my $dd = Data::Dumper->new([$config], ['db_config']);
 my $path = catfile(qw(lib My App Config.pm));

 open(my $file, '>', $path) or die "Cannot write to '$path': $!\n";

 printf $file <<'END_HERE', $dd->Dump();
 package My::App::Config;

 my $db_config;
 %s

 sub config
 {
 my ($self, $key) = @_;
 return $db_config->{$key} if exists $db_config->{$key};
 }

 1;
 END_HERE
 }

 sub create_database
 {
 my ($self, $dbname) = @_;
 my $config = $self->notes('db_config');
 my $dbpath = catfile('t', $dbname);

 local $/ = ";\n";
 local @ARGV = catfile(qw(sql schema.sql));
 my @sql = <>;

 my $dbh = DBI->connect(
 "DBI:$config->{db_type}:dbname=$dbpath",
 @$config{qw(user password)}
);
 $dbh->do($_) for @sql;
 }

 sub ACTION_build
 {
 my $self = shift;
 my $config = $self->notes('db_config');
 $self->create_database($config->{db_name});
 $self->SUPER::ACTION_build(@_);
 }

 sub ACTION_test
 {
 my $self = shift;
 my $config = $self->notes('db_config');
 $self->create_database($config->{test_db});
 $self->SUPER::ACTION_test(@_);
 }

 1;

Save the following file to Build.PL:

 #!perl

 use strict;
 use warnings;

 use lib 'build_lib';
 use MyBuild;

 my $build = MyBuild->new(
 module_name => 'My::App',
 requires =>
 {
 'DBI' => '',
 'DBD::SQLite' => '',
 },
 build_requires =>
 {
 'Test::Simple' => '',
 },
);

 $build->create_config_file();
 $build->create_build_script();

Now run Build.PL:

 $ perl Build.PL
 Database type [SQLite]
 SQLite
 Database user: [root]
 root
 Database password: [s3kr1+]
 s3kr1+
 Database name: [app_data]
 app_data
 Test database name: [test_db]
 test_db
 Deleting Build
 Removed previous script 'Build'
 Creating new 'Build' script for 'My-App' version '1.00'

Then build and test the module as usual:

 $ perl Build
 Created database 'app_data'
 lib/My/App/Config.pm -> blib/lib/My/App/Config.pm
 lib/My/App.pm -> blib/lib/My/App.pm

There aren’t any tests yet, so save the following as t/myapp.t:

 #!perl

 BEGIN
 {
 chdir 't' if -d 't';
 }

 use strict;
 use warnings;

 use Test::More 'no_plan'; # tests => 1;

 use DBI;
 use My::App::Config;

 my $user = My::App::Config->config('user');
 my $pass = My::App::Config->config('password');
 my $db_name = My::App::Config->config('test_db');
 my $db_type = My::App::Config->config('db_type');

 my $dbh = DBI->connect("DBI:$db_type:dbname=$db_name", $user, $pass);

 my $module = 'My::App';
 use_ok($module) or exit;

NOTE
SQLite databases don’t really use usernames and passwords, but play along.

Run the (simple) test:

 $ perl Build test
 Created database 'test_db'
 t/myapp....ok
 All tests successful.
 Files=1, Tests=1, 0 wallclock secs (0.20 cusr + 0.00 csys = 0.20 CPU)

What just happened?
The initial build asked a few questions about the destination database before creating

Build.PL. The MyBuild::create_config_file() method handles this, prompting for input

while specifying sane defaults. If the user presses Enter or runs the program from an

automated session such as a CPAN or a CPANPLUS shell, the program will accept the defaults.

More importantly, this also created a new file, lib/My/App/Config.pm. That’s why running

perl Build copied it into blib/.

Both perl Build and perl Build test created databases, as seen in the Created database...

output. This is the purpose of the MyBuild::ACTION_build() and MyBuild::ACTION_test()

methods, which create the database with the appropriate name from the configuration data.

The former builds the production database and the latter the testing database. If the user only

runs perl Build, the program will not create the test database. It will create the test database

only if the user runs the tests through perl Build test.

NOTE
How would you delete the test database after running the tests?

MyBuild::create_database() resembles the SQL handler seen earlier in Shipping Test

Databases.”

At the end of the program, the test file loads My::App::Config as a regular module and calls

its config() method to retrieve information about the testing database. Then it creates a new

DBI connection for that database, and it can run any tests that it wants.

What about...
Q: What if the test runs somewhere without permission to create databases?

A: That’s a problem; the best you can do is to bail out early with a decent error message and

suggestions to install things manually. You can run parts of your test suite if you haven’t

managed to create the test database; some tests are better than none.

Q: Is it a good idea to use fake data in the test database?

A: The further your test environment is from the live environment, the more difficult it is to

have confidence that you’ve tested the right things. You may have genuine privacy or

practicality concerns, especially if you have a huge dataset or if your test data includes

confidential information. For the sake of speed and simplicity, consider testing a subset of the

live data, but be sure to include edge cases and oddities that you expect to encounter.

Mocking Databases
Any serious code that interacts with external libraries or programs has to
deal with errors. In the case of database code, this is even more important.
What happens when the database goes away? If your program crashes, you
could lose valuable data.

Because error checking is so important, it’s well worth testing. Yet none of
the techniques shown so far make it easy to simulate database failures.
Fortunately, there’s one more trick: mock your database.

How do I do that?
InsertWrapper is a simple module that logs database connections and
inserts, perhaps for diagnostics or an audit trail while developing. If it
cannot connect to a database—or if the database connection goes away
mysteriously—it cannot do its work, so it throws exceptions for the
invoking code to handle.

Save the following example in your library directory as InsertWrapper.pm:

 package InsertWrapper;

 use strict;
 use warnings;

 use DBI;

 sub new
 {
 my ($class, %args) = @_;
 my $dbh = DBI->connect(
 @args{qw(dsn user password)},
 { RaiseError => 1, PrintError => 0 }
);

 my $self = bless { dbh => $dbh, logfh => $args{logfh} },
$class;
 $self->log('CONNECT', dsn => $args{dsn});
 return $self;
 }

 sub dbh
 {
 my $self = shift;

 return $self->{dbh};
 }

 sub log
 {
 my ($self, $type, %args) = @_;
 my $logfh = $self->{logfh};

 printf {$logfh} "[%s] %s\n", scalar(localtime()),
$type;

 while (my ($column, $value) = each %args)
 {
 printf {$logfh} "\t%s => %s\n", $column, $value;
 }
 }

 sub insert
 {
 my ($self, $table, %args) = @_;
 my $dbh = $self->dbh();
 my $columns = join(', ', keys %args);
 my $placeholders = join(', ', ('?') x values
%args);
 my $sth = $dbh->prepare(
 "INSERT INTO $table ($columns) VALUES
($placeholders)"
);

 $sth->execute(values %args);
 $self->log(INSERT => %args);
 }

 1;

The important tests are that connect() and insert() do the right thing when
the database is present as well as when it is absent, and that they log the
appropriate messages when the database calls succeed. Save the following
code as insert_wrapper.t:

 #!perl

 use strict;
 use warnings;

 use IO::Scalar;

 use Test::More tests => 15;
 use DBD::Mock;
 use Test::Exception;

 my $module = 'InsertWrapper';
 use_ok($module) or exit;

 my $log_message = '';
 my $fh = IO::Scalar->new(\$log_message);
 my $drh = DBI->install_driver('Mock');

 can_ok($module, 'new');

 $drh->{mock_connect_fail} = 1;

 my %args = (dsn => 'dbi:Mock:', logfh => $fh, user => '',
password => '');
 throws_ok { $module->new(%args) } qr/Could not connect/,
 'new() should fail if DB connection fails';

 $drh->{mock_connect_fail} = 0;
 my $wrap;
 lives_ok { $wrap = $module->new(%args) }
 '... or should succeed if connection works';
 isa_ok($wrap, $module);

 like($log_message, qr/CONNECT/, '... logging
connect message');
 like($log_message, qr/\tdsn => $args{dsn}/, '... with dsn'
);
 $log_message = '';

 can_ok($module, 'dbh');
 isa_ok($wrap->dbh(), 'DBI::db');

 can_ok($module, 'insert');
 $wrap->dbh()->{mock_can_connect} = 0;

 throws_ok { $wrap->insert('users', name => 'Jerry', age =>
44) }
 qr/prepare failed/,
 'insert() should throw exception if prepare fails';

 $wrap->dbh()->{mock_can_connect} = 1;
 lives_ok { $wrap->insert('users', name => 'Jerry', age => 44
) }
 '... but should continue if it succeeds';

 like($log_message, qr/INSERT/, '... logging insert
message');
 like($log_message, qr/\tname => Jerry/, '... with inserted
data');

 like($log_message, qr/\tage => 44/, '... for each
column');

Then run it with prove:

 $ prove insert_wrapper.t
 insert_wrapper....ok
 All tests successful.
 Files=1, Tests=15, 0 wallclock secs (0.22 cusr + 0.02 csys
= 0.24 CPU)

What just happened?
One difference between InsertWrapper and the previous examples in this
chapter is that this module creates its own database connection. It’s much
harder to intercept the call to DBI->connect() without faking the module
(see "Mocking Modules" in Chapter 5). Fortunately, the DBD::Mock module
provides a mock object that acts as a database driver.

The test starts by setting up the testing environment and creating an
IO::Scalar object that acts like a filehandle but actually writes to the
$log_message variable. Then it loads DBD::Mock and tells the DBI to
consider it a valid database driver.

InsertWrapper::new() connects to the database, if possible, setting the
RaiseError flag to true. If the connection fails, DBI will throw an exception.
The constructor doesn’t handle this, so any exception thrown will propagate
to the calling code.

NOTE
Remember Test:: Exception? Testing Exceptions" in Chapter 2 .

To simulate a connection failure, the test sets the mock_connection_fail flag
on the driver returned from the install_driver() code. This flag controls
the connection status of every DBD::Mock object created after it; any call to
DBI->connect() using DBD::Mock will fail.

NOTE
The test also clears $log_ message because subsequent prints will append to— not override—its
value.

new() needs only one failure to prove its point, so the test then disables the
connection failures by returning the flag to zero. At that point, with the
connection succeeding, the code should log a success message and the
connection parameters. The test checks those too.

That leaves forcing failures for InsertWrapper::insert(). The driver-wide
flag has no effect on these variables, so the test grabs the database handle of
the InsertWrapper object and sets its individual mock_can_connect flag to
false. DBD::Mock consults this before handling any prepare() or execute()
calls, so it’s the perfect way to pretend that the database connection has
gone away.

As before, it takes only one test to ensure that the failures propagate to the
calling code correctly. After the failure, the test code reenables the
connection flag and calls insert() again. This time, because the statements
should succeed, the test then checks the logged information.

What about...
Q: Would it work to override DBI::connect() to force failures manually?

A: Yes! There’s nothing DBD::Mock does that you can’t emulate with
techniques shown earlier. However, the convenience of not having to write
that code yourself is a big benefit.

Q: Can you set the results of queries with DBD::Mock?

A: Absolutely. The module has more power than shown here, including the
ability to return predefined results for specific queries. Whether you prefer
that or shipping a simple test database is a matter of taste. With practice,
you’ll understand which parts of your code need which types of tests.

Q: What’s the difference between DBD::Mock and Test::MockDBI?

A: Both modules do similar things from different angles. Test::MockDBI is
better when you want very fine-grained control over which statements
succeed and which fail. It’s also more complicated to learn and to use.
However, it works wonderfully as a development tool for tracing the
database calls, especially if you generate your SQL.

Perl.com has an introduction to Test::MockDBI at
http://www.perl.com/pub/a/2005/03/31/lightning2.html?page=2#mockdbi

http://www.perl.com/pub/a/2005/03/31/lightning2.html?page=2#mockdbi

and a more complete tutorial at
http://www.perl.com/pub/a/2005/07/21/test_mockdbi.html.

http://www.perl.com/pub/a/2005/07/21/test_mockdbi.html

Chapter 7. Testing Web Sites
Are you designing a web site and creating tests before or during its

construction? Do you already have a site and want to prove that it works? A

variety of design choices can help you make more robust web-based

applications, from isolating the logic behind the pages to ensuring what

happens when a user clicks the Submit button. The CPAN provides several

modules that allow you to create useful tests for your web applications.

This chapter demonstrates how to build web applications with testing in

mind as well as how to test them when you deploy them. The labs show

how to record your interaction with these programs and how to validate

HTML in a few different ways. Finally, the chapter walks through setting

up an instance of the Apache web server specifically designed to make

testing Apache modules easy.

Testing Your Backend
A friend of one of the authors has frequent table tennis tournaments at his

workplace and has long considered building a web application to keep track

of player rankings. The application, Scorekeeper, should maintain a list of

games, who played in each game, the final scores for each game, and when

the game took place. The application also should show how well players

perform against others overall—mostly for heckling purposes.

The conceptual relationships are immediately apparent: a game has two

scores and each score has a player and a game. It’s easy to model this with a

relational database. The next step is to build the GUI, right?

Suppose that you write this application in the unfortunate style of many

CGI programs in Perl’s history. It’s 1,500 lines long, and it contains giant

conditional blocks or maybe something resembling a dispatch table. It

might contain raw SQL statements, or it might use some kind of hand-rolled

database abstraction. How hard is it to add a ladder system or add play-by-

play recording? What if your friend suddenly wants a command-line client

or a GTK interface?

NOTE
Your 1,500-line single-file program works, but can you prove it?

To make this program easier to extend and test, separate the backend

database interaction, the display of the data, and the logic needed to control

them. This pattern, sometimes referred to as Model-View-Controller, allows

you to test your code more easily and leads to better code organization and

reuse.

How do I do that?
The introduction described the relationships of the application, so the

database structure is straightforward: every game, score, and player has a

table. Each game has scores, and each score has a player associated with it.

This lab uses SQLite, which provides a fully functional SQL database

without running a server. Save the following SQL as schema.sql:

 BEGIN TRANSACTION;
 CREATE TABLE game (
 id INTEGER PRIMARY KEY,
 date INTEGER
);
 CREATE TABLE score (
 id INTEGER PRIMARY KEY,
 game INTEGER,
 player INTEGER,
 value INTEGER
);
 CREATE TABLE player (
 id INTEGER PRIMARY KEY,
 name TEXT UNIQUE
);
 COMMIT;

Now, pipe the SQL file to the sqlite command, providing the path to the

database file as the first argument:

 $ sqlite keeper.db < schema.sql

NOTE
If you need to start with an empty database, remove the keeper.db file and rerun the sqlite
command.

You now have an empty SQLite database stored in keeper.db, and you can

work with it using the sqlite utility. The rest of this lab uses only Perl

modules to manipulate the Scorekeeper data. Save the following code as

player.t:

 use Test::More tests => 18;
 use Test::Exception;
 use Test::Deep;

 use strict;
 use warnings;

 BEGIN
 {
 use_ok('Scorekeeper');
 }

 my $a = Scorekeeper::Player->create({ name => 'PlayerA' });
 my $b = Scorekeeper::Player->create({ name => 'PlayerB' });
 my $c = Scorekeeper::Player->create({ name => 'PlayerC' });

 END
 {
 foreach my $player ($a, $b, $c)
 {
 $player->games->delete_all();
 $player->delete();
 }
 }

 dies_ok { Scorekeeper::Player->create({ name => $a->name() }
) }
 'cannot create two players with the same name';

 foreach my $tuple ([11, 8], [9, 11], [11, 7], [10, 11
], [11, 9])
 {
 my ($score1, $score2) = @$tuple;

 my $g = Scorekeeper::Game->create({ });
 $g->add_to_scores({ player => $a, value => $score1 });
 $g->add_to_scores({ player => $b, value => $score2 });
 }

 my $g2 = Scorekeeper::Game->create({ });
 $g2->add_to_scores({ player => $a, value => 11 });
 $g2->add_to_scores({ player => $c, value => 8 });

 is(scalar($a->games()), 6);

 is(scalar($b->games()), 5);

 is($a->wins(), 4, "player A's wins");
 is($b->wins(), 2, "player B's wins");
 is($c->wins(), 0, "player C's wins");

 is($a->losses(), 2, "player A's losses");
 is($b->losses(), 3, "player B's losses");
 is($c->losses(), 1, "player C's losses");

 cmp_deeply([$a->opponents()], bag($b, $c), "player A's
opponents");
 is_deeply([$b->opponents()], [$a], "player B's
opponents");
 is_deeply([$c->opponents()], [$a], "player C's
opponents");

 is($a->winning_percentage_against($b), 60, 'A vs B');
 is($b->winning_percentage_against($a), 40, 'B vs A');

 is($a->winning_percentage_against($c), 100, 'A vs C');
 is($c->winning_percentage_against($a), 0, 'C vs A');

 is_deeply(
 [Scorekeeper::Player->retrieve_all_ranked()],
 [$a, $b, $c],
 'players retrieved in the correct order of rank'
);

One of Class::DBI’s many extensions is Class::DBI::Loader, which uses

table and field names from the database to set up Class::DBI classes

automatically. Another is Class::DBI::Loader::Relationship, which allows

you to describe database relations as simple English sentences. The

Scorekeeper module uses these modules to initialize classes for the database

schema. Save the following as Scorekeeper.pm:

 package Scorekeeper;

 use strict;
 use warnings;

 use Class::DBI::Loader;
 use Class::DBI::Loader::Relationship;

 my $loader = Class::DBI::Loader->new(
 dsn => 'dbi:SQLite2:dbname=keeper.db',
 namespace => 'Scorekeeper',
);

 $loader->relationship('a game has scores');
 $loader->relationship('a player has games with scores');

 package Scorekeeper::Game;

 sub is_winner
 {
 my ($self, $player) = @_;

 my @scores =
 sort {
 return 0 unless $a and $b;
 $b->value() <=> $a->value()
 }
 $self->scores();
 return $player eq $scores[0]->player();
 }

 sub has_player
 {
 my ($self, $player) = @_;

 ($player = = $_->player()) && return 1 for $self-
>scores();
 return 0;
 }

 package Scorekeeper::Player;

 sub wins
 {
 my ($self) = @_;
 return scalar grep { $_->is_winner($self) } $self-
>games();
 }

 sub losses
 {
 my ($self) = @_;
 return scalar($self->games()) - $self->wins();
 }

 sub winning_percentage_against
 {
 my ($self, $other) = @_;

 my @all = grep { $_->has_player($other) } $self->games();
 my @won = grep { $_->is_winner($self) } @all;

 return @won / @all * 100;

 }

 sub retrieve_all_ranked
 {
 my ($self) = @_;
 return sort { $b->wins() <=> $a->wins() }
 $self->retrieve_all();
 }

 sub opponents
 {
 my ($self) = @_;

 my %seen;
 $seen{$_}++ for map { $_->player() } map { $_->scores() }
 $self->games();
 delete $seen{$self};

 return grep { exists $seen{$_} } $self->retrieve_all();
 }

 1;

NOTE
Replacing the “return if true for any” idiom in has__player() with the List::MoreUtils:: any()
function will make the code much clearer. That module has many other wonderful functions, too.

Now run player.t with prove. All of the tests should pass:

 $ prove player.t
 player....ok
 All tests successful.
 Files=1, Tests=18, 1 wallclock secs (0.68 cusr + 0.08 csys
= 0.76 CPU)

What just happened?
If you’ve written database code before, you may have spent a lot of time

storing and retrieving data from various tables. If only there were a really

slick way to turn these relationships into Perl classes without ever writing a

single SQL statement! There are, in fact, a handful of modules that do just

that, including Class::DBI. If you’re not familiar with Class::DBI, this test

file demonstrates how little code it takes to set up these relationships.

When testing databases, it’s a good idea to clean up any data left over after

the tests end. To do this, the test file declares an END block containing

statements to execute when the program ends, even if it dies. The END block

iterates through every new player created and deletes any games and scores

associated with that player and then the player itself, leaving no extra

records in the database. (See “Testing Database Data” in Chapter 6 for

more.)

NOTE
By default, deleting a Class:: DBI object also deletes its immediate relations.

The database schema specified that a player’s name must be unique. To test

this constraint, player.t attempts to create a fourth player in a dies_ok()

block with the same name as player $a. If creating the player fails, as it

should, dies_ok() will report a success.

After adding some fake scores, player.t performs a couple of tests to see if

the games(), wins(), losses(), and winning_percentage_against() methods

return accurate values. The most interesting test uses Test::Deep’s

cmp_deeply() to verify the opponents of $a are indeed the two other players

that $a has played.

NOTE
cmp_deeply() and bag()can check the contents of an array without knowing the order of the items
it contains.

The backend for Scorekeeper now has decent test coverage. You can be

confident that any graphical view that you create for the Scorekeeper data

will display accurate information.

Testing Your Frontend
Once you’ve fully tested the backend of your web application, you should

test its frontend as well. Assume that you have expanded the Scorekeeper

application (see "Testing Your Backend,” earlier in this chapter) to contain

interfaces for adding players and games. The steps for testing by hand are

straightforward: open the application in the browser, type things into the

form fields, click Submit, and check the contents of the resulting page.

Then repeat. Unfortunately, as the application grows, so does the punch list

of manual regression tests you need to perform to make sure everything

works.

This lab shows how to automate the testing of web applications using

Test::WWW::Mechanize, a subclass of WWW::Mechanize that works well for

test programs.

How do I do that?
This lab tests the frontend of the CPAN Search site (http://search.cpan.org/).

This web site has one primary form that allows users to find modules as

well as some navigational links to take visitors to the most-frequented parts

of the site.

NOTE
You could use similar code to test the frontend of the Scorekeeper application.

When constructing tests for web applications, always start by listing the

behavior you expect from the application. How do you expect the CPAN

Search Site to work?

I should be able to retrieve the CPAN Search Site home page

successfully.

If I search the modules for “frobnicate”, there shouldn’t be any results.

If I search the modules for “test”, there should be many results.

Once I’ve searched for “test”, all of the links on the resulting page

should work.

http://search.cpan.org/

These assertions sound pretty solid. Save the following file as mech.t:

 #!perl

 use strict;
 use warnings;

 use Test::More tests => 6;
 use Test::WWW::Mechanize;

 my $mech = Test::WWW::Mechanize->new();

 $mech->get_ok('http://search.cpan.org/');

 $mech->title_is('search.cpan.org: The CPAN Search Site');

 $mech->form_name('f');
 $mech->field('query', 'frobnicate');
 $mech->select('mode', 'module');
 $mech->submit();

 $mech->content_contains('No matches');

 $mech->back();

 $mech->field('query', 'test');
 $mech->submit();

 $mech->content_like(qr/ Results .+ Found /sx);
 $mech->content_lacks('No matches');
 $mech->page_links_ok();

Running mech.t should result in six successful tests. The last test may take a

bit longer than the first five, depending on the speed of your network

connection.

What just happened?
After useing the Test::WWW::Mechanize module, the test file creates an

object of that class, $mech. The $mech object pretends to be a real human that

fills in forms and clicks on links and buttons. It even keeps a history,

meaning that the back() method works just like the Back button in your

favorite browser.

NOTE
WWW::Mechanize provides other methods to fill out and submit a form in one statement.

The first step is to instruct $mech to retrieve the CPAN Search home page,

which contains a single form named simply f. The get_ok() method not

only does this, but also reports a successful test if it fetched the web page

without an error.

Next, $mech checks the title of the fetch page. title_is() ensures that the

title is exactly the string specified. Test::WWW::Mechanize also provides

alternative title_like() and title_unlike() methods that check whether

the title matches or does not match a given regular expression.

Many of the other methods on Test::WWW::Mechanize objects have

is()/isnt() or like()/unlike() variants. See the Test::WWW::Mechanize

module documentation for details.

The test selects the form named f as the form for which to specify input

values. $mech then simulates filling out the text field named query and

selecting the item from the pop-up menu named mode with the value of

module. The submit() method then “clicks” the Submit button for the form,

and the $mech object happily retrieves the resulting page.

At the time of this writing, there aren’t any modules with names containing

the word “frobnicate,” thus the search results should be empty. $mech

ensures that the resulting page contains the phrase “No matches” by using

the content_contains() method.

$mech next clicks its virtual Back button and jumps back to the page

containing the original web form. Because the object has already selected

the correct pop-up menu item in the form, $mech only needs to change the

text field to contain “test.” It then submits the form again.

This time, there are lots of modules with the word “test” in their names. The

test checks that the results page does not contain the phrase “No matches”

as seen earlier.

Test::WWW::Mechanize provides a convenience function, page_links_ok(),

to test that it can follow all of the links on the current page successfully.

Because there are more than 50 links on the results page, and Mechanize

retrieves each one, this takes a little while. If all of the links are indeed

valid, page_links_ok() produces a sixth successful test.

Record and Play Back Browsing Sessions
Creating lengthy programs to test web applications might seem a bit

tedious. The mech-dump utility that comes with WWW::Mechanize prints the

names and elements of every form and provides some relief when searching

for form and form element names. However, using that data in your tests

means that you’ll have to cut and paste multiple small blocks of code. Yuck.

NOTE
The mech-dump utility that comes with WWW:: Mechanize prints out everything that a WWW::
Mechanize object knows about a web page.

Relieve some of the hassle by using HTTP::Recorder to set up an HTTP

proxy to record the pages you visit and the forms you fill out. As you

browse, HTTP::Recorder saves each action as WWW::Mechanize code.

How do I do that?
Save the following listing as recorder.pl:

NOTE
At the time of this writing, HTTP::Recorder is incomplete, though it’s still worth using as a base
from which you can develop test files for web interaction.

 #!perl

 use strict;
 use warnings;

 use HTTP::Recorder;
 use HTTP::Proxy;

 my $agent = HTTP::Recorder->new(file => "mech2.t",
showwindow => 1);

 my $proxy = HTTP::Proxy->new(
 port => 4567,
 agent => $agent,
);

 $proxy->start();

Next, configure your browser’s proxy settings to connect to your own

machine as a proxy on port 4567, as Figure 7-1 shows. Don’t forget to

restore the original settings after you finish this lab!

Figure 7-1. Proxy connection settings in Mozilla Firefox

Now run recorder.pl. You won’t see any output from the program while it’s

running, so don’t hold your breath.

 $ perl recorder.pl

Go to http://search.cpan.org/ in your browser. If everything went as

planned, you’ll see a pop-up window appear with Perl code!

NOTE
Using Mozilla Firefox or some other pop-up - blocking tool? Allow pop-ups while you’re doing
this lab to see HTTP::Recorder’s window.

http://search.cpan.org/

Search the CPAN for “gerbil counting” and click the Submit button, and

then click on the Home link at the top. Search for something else and click

Next once a page of results appears. As you’re doing this, the pop-up

window will refresh with every request to show updated Perl code. Figure

7-2 shows an example.

Figure 7-2. Pop-up window produced by HTTP::Recorder

What just happened?
Running recorder.pl starts an HTTP proxy daemon that your browser uses

to make requests. The proxy uses an HTTP::Recorder agent, which attempts

to keep track of submitted forms and log the requests in the form of Perl

code. It saves a logfile as mech2.t, which you specifed when creating the

HTTP::Recorder object. Additionally, because showwindow is true, the proxy

modifies the content of the requested page to display a pop-up window with

the current contents of mech2.t.

The Perl code saved to mech2.t is actually a series of statements involving a

hypothetical WWW::Mechanize object. You can add the object yourself:

 #!perl

 use WWW::Mechanize;

 my $agent = WWW::Mechanize->new(autocheck => 1);

 $agent->get("http://search.cpan.org/");
 $agent->field("query", "gerbil counting");
 $agent->submit_form(form_name => "f");

 $agent->follow_link(text => "Home", n => "1");
 $agent->field("query", "test");
 $agent->submit_form(form_name => "f");

 $agent->follow_link(text => "Next >>", n => "1");

In its current state, this program isn’t very useful. If the CPAN Search Site

ceases to function and you run this program, WWW::Mechanize won’t be able

to fill out the forms and will die. A better idea is to convert it to a test file,

which is why you named the file with a .t suffix. Modify mech2.t to use

Test::WWW::Mechanize (from the "Testing Your Frontend" lab, earlier in this

chapter):

 #!perl

 use strict;

 use Test::More tests => 3;
 use Test::WWW::Mechanize;

 my $agent = Test::WWW::Mechanize->new;

 $agent->get_ok('http://search.cpan.org/');
 $agent->field('query', 'gerbil counting');
 $agent->submit_form(form_name => 'f');

 $agent->follow_link_ok({ text => 'Home', n => '1' });
 $agent->field('query', 'test');
 $agent->submit_form(form_name => 'f');

 $agent->follow_link_ok({ text => 'Next >>', n => '1' });

Running the modified mech2.t should produce three passing tests.

To turn the HTTP::Recorder output into tests, the code instantiates $agent as

a Test::WWW::Mechanize object. Note that statements that work as tests have

changed. When defining $agent, the test file doesn’t need autocheck => 1

any more because it uses get_ok() and follow_link_ok() to test the success

of a request. follow_link_ok() expects a hash reference of arguments just

as follow_link() does.

Testing the Validity of HTML
As you test the features of your web applications, you also may want to

make sure the HTML content that your code produces conforms to the

standards set by the World Wide Web Consortium (http://www.w3.org/).

Coding to standards makes your site cleaner, easier to maintain, and more

accessible from a variety of browsers and clients, especially for users with

disabilities.

How do I do that?
The Test::HTML::Tidy module provides a single function, html_tidy_ok(),

that checks the completeness and correctness of an HTML document. Save

the following code as tidy.t:

NOTE
You might already be familiar with the tidy command. Test:: HTML::Tidy uses HTML::Tidy as a
backend, which in turn uses the tidy library.

 #!perl

 use strict;

 use Test::More tests => 2;
 use Test::WWW::Mechanize;
 use Test::HTML::Tidy;

 my $mech = Test::WWW::Mechanize->new();

 $mech->get_ok('http://search.cpan.org/');

 html_tidy_ok($mech->content);

 $mech->field('query', 'otter spotting');
 $mech->submit();

 html_tidy_ok($mech->content());

When running the test file, you may see successes or failures, depending on

the current conformity of the CPAN Search Site.

What just happened?

http://www.w3.org/

tidy.t uses Test::HTML::Tidy along with Test::WWW::Mechanize to make

sure the CPAN Search Site’s home page is valid HTML. The first test

passes the entire HTML document, $mech->content, to html_tidy_ok(),

which reports success if the page validates. The test then searches the

CPAN for “otter spotting” and checks the HTML of the resulting page as

well.

What about...
Q: Can I check a smaller portion of HTML instead of an entire document?

A: Use Test::HTML::Lint, which exports an html_ok() function to which

you can pass any bit of HTML. Save the following listing as table.t:

NOTE
Test::HTML::Lint uses HTML::Lint as a backend.

 #!perl

 use strict;

 use Test::More tests => 1;
 use Test::HTML::Lint;

 html_ok(<<'EOF');

 <h1>My Favorite Sciuridae</h1>

 <table>
 <trh>
 <td>Grey squirrel</td>
 <td>plump, calm</td>
 </tr>
 <tr>
 <td>Red squirrel</td>
 <td>quick, shifty</td>
 <tr>
 <td>Yellow-bellied Marmot</td>
 <td>aloof</td>
 </tr>
 </table>

 EOF

NOTE
Yep, those errors are intentional.

Run the test file with prove:

 $ prove -v part.t
 part....1..1
 not ok 1
 # Failed test (part.t at line 8)
 # Errors:
 # (5:5) Unknown element <trh>
 # (8:5) </tr> with no opening <tr>
 # (16:1) <trh> at (5:5) is never closed
 # (16:1) <tr> at (9:5) is never closed
 # Looks like you failed 1 tests of 1.
 dubious
 Test returned status 1 (wstat 256, 0x100)
 DIED. FAILED test 1
 Failed 1/1 tests, 0.00% okay
 Failed 1/1 test scripts, 0.00% okay. 1/1 subtests failed,
0.00% okay.
 Failed Test Stat Wstat Total Fail Failed List of Failed

 part.t 1 256 1 1 100.00% 1

html_ok() reports the single test as a failure and reports exactly where the

document has errors. The error reports take the form of (line number :
character position), where the line number is the line number of the

provided HTML. As the output explains, Test::HTML::Lint has no idea

what a <trh> tag is. Nevertheless, neither it nor the <tr> tag ever close.

There’s more work to do before putting this table of favorite furry animals

online.

Running Your Own Apache Server
Testing web applications or Apache modules might be as easy as testing the

web applications in previous labs: configure Apache, run the server, and

then run the tests. However, it can become a pain to make sure the Apache

server is in a pristine state every time you want to run the tests. Apache-Test

gives you the ability to start and stop a special Apache server to use for

automated testing of Apache modules.

NOTE
Apache-Test is the distribution that contains Apache::Test and the related modules.

How do I do that?
Apache-Test needs a t/ directory for the server configuration, document

root, and test files. Create the directories lib/, t/, and t/conf/.

You also need a tiny program to start and stop the Apache server as well as

to run the tests. Save the following as t/TEST:

 #!perl

 use strict;

 use Apache::TestRun;
 Apache::TestRun->new->run(@ARGV);

Suppose that you want to serve your photo album from the test server, a

step that requires adding custom directives to Apache’s configuration. Save

the following as t/conf/extra.conf.in:

NOTE
You need to adjust the second argument of Alias to the full path of the directory you want to serve.

 Alias /pictures /home/anu/pictures

 <Location /pictures>
 Options +Indexes
 Allow from all
 </Location>

It’s also a good idea to tell Apache-Test where your Apache executable is.

Do this by setting the APACHE_TEST_HTTPD environment variable in your

shell:

 $ export APACHE_TEST_HTTPD=/usr/sbin/apache-perl

Now, run TEST with the -start-httpd argument to start the demo server on

the default Apache-Test port:

NOTE
If you use something besides the Bourne shell or a derivative, consult the manual for instructions
on setting an environment variable.

 $ perl t/TEST -start-httpd
 [warning] setting ulimit to allow core files
 ulimit -c unlimited; /usr/bin/perl /home/anu/setup/t/TEST -
start-httpd
 /usr/sbin/apache-perl -d /home/anu/setup/t -f
 /home/anu/setup/t/conf/httpd.conf -D APACHE1 -D
PERL_USEITHREADS
 using Apache/1.3.33

 waiting 60 seconds for server to start: .
 waiting 60 seconds for server to start: ok (waited 0 secs)
 server localhost:8529 started

Congratulations—you now have a web server serving your photo gallery!

There are a few things to note in the output, such as which Apache

executable actually ran (/usr/sbin/apache-perl). The output also shows

two options passed to the executable, the server root (-d

/home/anu/setup/t) and the configuration file it used (-f

/home/anu/setup/t/conf/httpd.conf). The output displays what version of

Apache is in use, and then a few lines while the server starts. Finally, the

last line of the output shows the host and port the daemon uses.

Navigate to the host and port with your browser. You should be able to

browse the directory you specified in extra.conf.in, as Figure 7-3 shows.

Figure 7-3. Using a test Apache server

When you finish browsing and want to shut down the server, run TEST
with the -stop-httpd argument:

 $ perl t/TEST -stop-httpd
 [warning] setting ulimit to allow core files
 ulimit -c unlimited; /usr/bin/perl /home/anu/setup/t/TEST -
stop-httpd
 [warning] server localhost:8529 shutdown

You should no longer be able to access the web server with your browser.

What just happened?
The TEST program puts together all of the pieces to execute and manage an

Apache server and test suite that uses it. When you run TEST, it creates a

configuration file that incorporates any additional files you provide, such as

conf/extra.conf.in. TEST also creates a logging directory, t/logs/ by default,

which holds the standard access_log and error_log files. After initialization,

TEST launches an Apache server that listens on port 8529 by default.

TEST has many command-line options such as -verbose, which shows

many more diagnostics. You can also use the -clean option to remove the

slew of autogenerated files Apache-Test creates when it starts the server.

Run TEST -help for a complete list of options.

Testing with Apache-Test
"Running Your Own Apache Server" demonstrated how to start and stop an

Apache server manually. In real life, you’ll probably start and stop the test

server automatically when you want to run your test suite. This lab shows

how to test and create a simple Apache module, called Thumbnail, that uses

the Imager module to resize images to a certain width and height. How do

you know this module works? Use Apache-Test to test it!

How do I do that?
First, create a lib/ directory. You should already have the t/ and /t/conf/
directories from the previous lab. t/TEST will be the same, but

t/conf/extra.conf.in needs some editing.

NOTE
Remember to add this new lib/ directory to Perl’s search path.

In custom configuration files such as extra.conf.in, the server substitutes

special variables (in the form of @ NAME @) with useful values when it

starts. The server uses those directives in the file as its configuration.

Adding the lib/ directory to Perl’s module search path is easy; add it to the

SERVERROOT variable.

Save the following as t/conf/extra.conf.in:

 <IfModule mod_perl.c>

 <Perl>
 use lib '@SERVERROOT@/../lib';
 use Thumbnail ();
 </Perl>

 <Location /images>
 SetHandler perl-script
 PerlHandler Thumbnail
 </Location>

 </IfModule>

Save the Thumbnail module as lib/Thumbnail.pm:

 package Thumbnail;

 use strict;
 use warnings;

 use Apache::Constants qw(:common);
 use Apache::File;
 use Imager;

 our $constraint = 150;

 sub handler
 {
 my ($r) = @_;

 return DECLINED unless $r->content_type() =~ m{^image/};

 my $img = Imager->new();
 $img->open(file => $r->filename) or die $img->errstr();

 $img = $img->scale(xpixels => $constraint, ypixels =>
$constraint);

 my ($tmpfile, $tmpfh) = Apache::File->tmpfile();
 $img->write(file => $tmpfile, type => 'jpeg')
 or die $img->errstr();

 $r->send_http_header('image/jpeg');
 $r->send_fd($tmpfh);

 return OK;
 }

 1;

Save the following test file as t/thumbnail.t:

 #!perl

 use strict;
 use warnings;

 use Apache::Test;
 use Apache::TestUtil;
 use Apache::TestRequest qw(GET_BODY);
 use Imager;

 plan(tests => 1, need_module('mod_perl'));

 my $content = GET_BODY('/images/panorama.jpg');

 my $img = Imager->new();
 $img->open(data => $content, type => 'jpeg')
 or die $img->errstr();

 my $max = 150;

 t_debug("assuming constraint is $max pixels");

 t_debug('width: ' . $img->getwidth());
 t_debug('height: ' . $img->getheight());

 ok(($img->getwidth() = = $max) or ($img->getheight() =
= $max));

Finally, you need a picture for the module to transform. Pick something

large, such as a breathtaking scene of Bryce Canyon with deer grazing in

the distance. Save it as t/htdocs/images/panorama.jpg.

First make sure that Apache-Test knows where to find your Apache

executable by setting the APACHE_TEST_HTTPD environment variable:

NOTE
If you’re not using a bash-like shell, see your shell’s documentation to set this variable correctly.

 $ export APACHE_TEST_HTTPD=/usr/sbin/apache-perl

Run TEST to run the tests:

 $ perl t/TEST
 [warning] setting ulimit to allow core files
 ulimit -c unlimited; /usr/bin/perl /home/anu/thumbnail/t/TEST
 /usr/sbin/apache-perl -d /home/anu/thumbnail/t -f
 /home/anu/thumbnail/t/conf/httpd.conf -D APACHE1 -D
PERL_USEITHREADS
 using Apache/1.3.33

 waiting 60 seconds for server to start: .
 waiting 60 seconds for server to start: ok (waited 0 secs)
 server localhost:8529 started
 t/thumbnail....ok
 All tests successful.
 Files=1, Tests=1, 2 wallclock secs (0.35 cusr + 0.05 csys
= 0.40 CPU)
 [warning] server localhost:8529 shutdown

Within the Apache-Test diagnostic output, you’ll see that all of the tests

succeeded.

What just happened?
t/ is the server root directory, which is where Apache looks for the conf/ or

htdocs/ directory. If an htdocs/ directory is present, Apache will use it as the

document root. By default, Apache-Test saves a simple index.html in the

document root when it starts, but the images/ directory is more interesting

right now.

Requesting the URI /images/panorama.jpg without using the handler would

simply return the picture of the canyon with the lovely grazing Cervidae.

extra.conf.in, however, uses a <Location> directive to specify that the

thumbnail-generating module will handle paths beginning with /images.

Thumbnail is a fairly straightforward Apache module. It handles only

images, returning DECLINED if Apache doesn’t believe that the file’s type is

some sort of image. If it is an image, the handler reads in the file and resizes

it (in memory, not on disk) so that it is at the most 150 pixels square.

Finally, it sends the resized image as the content of the response.

NOTE
Instead of printing a gigantic scalar, Thumbnail.pm uses Apache:: File to create a temporary file
and uses the send_fd() method with a filehandle.

...or does it? Does the module truly resize the image? This is precisely what

t/thumbnail.t tests.

thumbnail.t doesn’t use Test::More. Instead, it uses Apache-Test’s

framework, which is a bit different. Remember, though, that tests always

boil down to a simple “ok” or “not ok.”

The first difference is that Apache::Test provides a different plan()

function. While it appears the same as the Test::More version, it actually

provides many more features, allowing developers to specify requirements

for the tests that skip the tests if not met. thumbnail.t ensures that the

Apache server used for testing does indeed have mod_perl enabled by

specifying need_module('mod_perl'). Without mod_perl, the file skips the

tests.

Alternatively, you can use need_module() to specify that the tests require a

certain Perl module. For example, to modify the plan() statement to specify

that you need the Imager module, write:

 plan tests => 1, need_module('Imager');

To skip the test file completely, use the skip_reason() function exported by

Apache::Test in combination with plan():

 plan tests => 1, skip_reason("our Perl ain't up to snuff");

This is merely the tip of the iceberg in terms of what Apache::Test’s plan()

function can do. For more information, see the Apache::Test

documentation.

Continuing with differences between Apache-Test and Test::More, note that

there are no is() or diag() functions. Instead, Apache::TestUtil exports

t_cmp() and t_debug(). t_cmp() takes the same arguments as is(), but you

must use it in conjunction with ok(). For example, to test that the image

uses 16-bit color:

 ok(t_cmp($img->bits(), 16, 'image has sixteen bits'));

t_debug() prints out diagnostic messages in the same manner as

Test::More’s diag() function. thumbnail.t uses t_debug() to print out the

value of the image’s actual size. To see these diagnostic messages, run

TEST with the -verbose option. When you do, you’ll see other debugging

information in addition to your own messages:

NOTE
If your tests suddenly stop working, run TEST with the “-clean” option to remove extra generated
files. Then be sure to run TEST with -verbose”.

 $ perl t/TEST -verbose
 [warning] setting ulimit to allow core files
 ulimit -c unlimited; /usr/bin/perl /home/anu/thumbnail/t/TEST
-verbose
 /usr/sbin/apache-perl -d /home/anu/thumbnail/t -f
 /home/anu/thumbnail/t/conf/httpd.conf -D APACHE1 -D
PERL_USEITHREADS
 using Apache/1.3.33

 waiting 60 seconds for server to start: .
 waiting 60 seconds for server to start: ok (waited 0 secs)
 server localhost:8529 started
 t/thumbnail....1..1
 # Running under perl version 5.008004 for linux
 # Current time local: Thu Mar 24 11:13:55 2005
 # Current time GMT: Thu Mar 24 16:13:55 2005
 # Using Test.pm version 1.24

 # Using Apache/Test.pm version 1.20
 # assuming constraint is 150 pixels
 # width: 200
 # height: 150
 ok 1
 ok
 All tests successful.
 Files=1, Tests=1, 1 wallclock secs (0.35 cusr + 0.06 csys
= 0.41 CPU)
 [warning] server localhost:8529 shutdown

NOTE
Want even more diagnostic output? Set APACHE_ TEST_TRACE_ LEVEL=debug and
APACHE_ TEST_COLOR=1 to see colorized, lower-level debugging information.

The biggest step is to contact the test server to make requests so that you

can test whether the returned content is what you expected.

Apache::TestRequest optionally exports a slew of functions that make this

easy. thumbnail.t uses the GET_BODY() function, which makes a simple GET

request to the test server and returns the content. By using

Apache::TestRequest’s functions, you never have to know the port number

or IP address of your test server.

Other useful Apache::TestRequest exports include functions such as GET(),

HEAD(), PUT(), and POST() to make those types of requests. Each of these

has a corresponding _OK function. For example, GET_OK() makes a GET

request and checks the resulting response code. Similarly, _BODY functions

retrieve just the content of the response. _BODY_ASSERT functions check the

success of the request and return the content. Finally, a set of UPLOAD()

functions exist for sending entire files.

NOTE
If you extended Thumbnail.pm to allow the pixel constraint to be set in the Apache configuration
with PerlSetVar, what would you add to the tests?

What about...
Q: Can I use other test modules with Apache::Test?

A: Sure. Provide -withtestmore as an argument to use Apache::Test and

all of Test::More’s functions instantly become available:

 #!perl

 use strict;
 use warnings;

 use Apache::Test qw(-withtestmore);
 use Apache::TestUtil;
 use Apache::TestRequest qw(GET_BODY);
 use Imager;

 plan(tests => 1, need_module('mod_perl'));

 my $content = GET_BODY('/images/panorama.jpg');

 my $img = Imager->new();
 $img->open(data => $content, type => 'jpeg')
 or die $img->errstr();

 my $max = 150;

 diag('assuming constraint is $max pixels');

 diag('width: ' . $img->getwidth());
 diag('height: ' . $img->getheight());

 ok(($img->getwidth() = = $max) or ($img->getheight() =
= $max));

Note that at the time of this writing, compatibility with test modules that

use Test::Builder is still experimental.

Where to learn more
This lab is only a glimpse into the world of testing Apache with Perl. More

advanced concepts include testing C modules and debugging tests.

“Running and Developing Tests with the Apache::Test Framework” at

http://perl.apache.org/docs/general/testing/testing.html covers these subjects

in more detail.

http://perl.apache.org/docs/general/testing/testing.html

Distributing Modules with Apache-Test
The previous lab, "Testing with Apache-Test,” created a simple Apache

module that you tested with Apache-Test. Suppose that the module is so

handy, useful, and original that you want to share it with the world. How do

you set up your tests in a module distribution?

This lab demonstrates how to set up a module distribution for use with

Module::Build and the Apache-Test testing framework.

How do I do that?
Keep all of the files you created from the previous lab except for t/TEST;

Apache-Test will create it for you automatically. Save the following as

Build.PL in the directory that contains both t/ and lib/:

 #!perl

 use Module::Build;

 my $build_pkg =
 eval { require Apache::TestMB } ? 'Apache::TestMB' :
'Module::Build';

 my $build = $build_pkg->new(
 module_name => 'Thumbnail',
 dist_version => 0.01,
 license => 'perl',
 requires => {
 'Apache::Test' => 1.12,
 'Imager' => 0.40,
 },
);

 $build->create_build_script();

Then build and test like any other Module::Build-based distribution:

 $ perl Build.PL
 Creating new 'Build' script for 'Thumbnail' version '0.01'
 $ perl Build test
 lib/Thumbnail.pm -> blib/lib/Thumbnail.pm
 /usr/bin/perl -I /home/anu/thumbnail/blib/lib -I
 /home/anu/thumbnail/blib/arch t/TEST -clean
 [warning] setting ulimit to allow core files
 ulimit -c unlimited; /usr/bin/perl /home/anu/thumbnail/t/TEST

-clean
 /usr/bin/perl -I /home/anu/thumbnail/blib/lib -I
/home/anu/thumbnail/blib/arch
 t/TEST -bugreport -verbose=0
 [warning] setting ulimit to allow core files
 ulimit -c unlimited; /usr/bin/perl /home/anu/thumbnail/t/TEST
-bugreport
 -verbose=0
 /usr/sbin/apache-perl -d /home/anu/thumbnail/t -f
 /home/anu/thumbnail/t/conf/httpd.conf -D APACHE1 -D
PERL_USEITHREADS
 using Apache/1.3.33

 waiting 60 seconds for server to start: .
 waiting 60 seconds for server to start: ok (waited 0 secs)
 server localhost:8529 started
 t/thumbnail.............ok
 All tests successful.
 Files=1, Tests=1, 4 wallclock secs (0.67 cusr + 0.08 csys
= 0.75 CPU)
 [warning] server localhost:8529 shutdown

NOTE
Did “Build test” fail? Check to see that Apache-Test has the correct path to the Apache
executable.If it’s not correct, set the APACHE_TEST_HTTPD environment variable to what you
used in the previous lab.

Add documentation (if you haven’t already) and some tweaking to

Build.PL, and your distribution is ready to go!

What just happened?
Apache::TestMB adds Apache-Test features to Module::Build, which, among

other things, automatically create a TEST file for you. Running perl Build

test prepares the distribution and runs the test suite using TEST.

Users who don’t have Apache-Test installed when they run perl Build.PL

will see a large warning about the missing prerequisite. However, they can

still build and install the distribution.

What about...
Q: What if I’m using ExtUtils::MakeMaker to distribute my modules?

A: There’s a little more syntax you’ll need to have Apache-Test generate

the t/TEST file automatically. The following Makefile.PL is similar to the

Build.PL shown in the lab:

 #!perl

 use ExtUtils::MakeMaker;
 use Apache::TestMM qw(test clean);
 use Apache::TestRun;

 Apache::TestMM::filter_args();

 Apache::TestRun->generate_script();

Chapter 8. Unit Testing with Test::Class
If you have experience in other object-oriented languages, you may have

used unit testing to develop your test cases and test suites. Object-oriented

unit testingframeworks are more popular with programming languages such

as C# and Java, while the majority of Perl tests are procedural. This isn’t to

say that one style is better than the other—the choice between styles

depends on the goal and structure of your software.

Test::Class is a powerful testing library that allows you to design your

tests in the xUnit style. Tests using Test::Class are classes, not just simple

test files. This is more complicated to start, but it allows you to organize test

cases more easily as well as minimize repetitive testing code, especially for

heavily object-oriented projects.

This chapter demonstrates how to write unit testing code in Perl with

Test::Class to take advantage of its benefits, including fixtures and

inheritance.

Writing Test Cases
Consider a Queue object that stores items to access in first-in, first-out order.

Queue allows you to enqueue and dequeue items, returning them in insertion

order. You can query a Queue for how many items it contains. Sure, it’s

simple enough to do this with Perl’s basic data structures, but the

complexity of Queue could grow quickly as its uses supersede what a normal

array provides.

This lab demonstrates how to test Queue by creating a module that

subclasses Test::Class.

How do I do that?
Create a directory Queue/ and save the following as Queue/Test.pm:

 package Queue::Test;

 use base 'Test::Class';

 use Queue;
 use Test::More;

 sub size : Test(4)
 {
 my $q1 = Queue->new();
 isa_ok($q1, 'Queue');
 is($q1->size(), 0, 'an empty queue');

 my $q2 = Queue->new(qw(howdy bonjour));
 isa_ok($q2, 'Queue');
 is($q2->size(), 2, 'a queue with some elements');
 }

 sub enqueue : Test(2)
 {
 my $queue = Queue->new();
 isa_ok($queue, 'Queue');

 $queue->enqueue($_) for qw(howdy bonjour);
 is($queue->size(), 2, 'queue is now larger');
 }

 sub dequeue : Test(6)
 {
 my $queue = Queue->new();
 isa_ok($queue, 'Queue');

 is($queue->dequeue, undef, 'empty queue');

 $queue->enqueue($_) for qw(howdy bonjour);
 is($queue->size(), 2, 'queue is now larger'
);
 is($queue->dequeue(), 'howdy', 'first item'
);
 is($queue->dequeue(), 'bonjour', 'second item'
);
 is($queue->size(), 0, 'queue is now smaller'
);
 }

 1;

The Queue class is fairly simple as far as Perl objects go. Save it as

Queue.pm:

 package Queue;

 use strict;
 use warnings;

 sub new

 {
 my ($class, @items) = @_;
 bless \@items, $class;
 }

 sub size
 {
 my ($self) = @_;
 return scalar @$self;
 }

 sub enqueue
 {
 my ($self, $item) = @_;
 push @$self, $item;
 }

 sub dequeue
 {
 my ($self) = @_;
 return shift @$self;
 }

 1;

Save the test file as queue.t:

 #!perl

 use Queue::Test;

 Test::Class->runtests();

Finally, run queue.t with prove:

 $ prove queue.t
 queue....#
 # Queue::Test->test_dequeue
 1..12
 ok 1 - The object isa Queue
 ok 2 - empty queue
 ok 3 - queue is now larger
 ok 4 - first item
 ok 5 - second item
 ok 6 - queue is now smaller
 #
 # Queue::Test->test_enqueue
 ok 7 - The object isa Queue
 ok 8 - queue is now larger
 #
 # Queue::Test->test_size

 ok 9 - The object isa Queue
 ok 10 - an empty queue
 ok 11 - The object isa Queue
 ok 12 - a queue with some elements
 ok
 All tests successful.
 Files=1, Tests=12, 1 wallclock secs (0.19 cusr + 0.00 csys
= 0.19 CPU)

What just happened?
The test file you saved as queue.t has a very simple job: to run all of the test

methods defined in the Queue::Test class. Test::Class is smart—it keeps

track of any module that subclasses it. All you need to do is use your test

modules and call runtests() on Test::Class itself.

You can use any Test::Builder testing module with Test::Class, such as

Test::Exception or Test::Deep. Most test classes use at least Test::More’s

basic testing functions.

To designate a method as containing tests, add a Test(n) attribute that

declares how many tests the method contains. Test::Class automatically

adds them all up and declares a plan for you, so you don’t need to scan

through giant test files to count all of your is() and ok() functions. If you

don’t know how many tests a method will contain, use the Test(no_plan)

attribute.

NOTE
Subroutine attributes are the things after the subroutine name and before the opening brace. See
perldoc attributes to learn more.

If your test methods die or return before the end of the test method,

Test::Class will produce fake skipped tests enough times to complete the

test count declared in the Test attribute. Dying in a test method produces a

test failure, and returning skips the remaining tests in the method. However,

if you return when you use Test(no_plan), you won’t have any idea if there

are tests after the return statement that should have run!

When you run your tests with verbose mode (either by using the -v option

with prove or by setting the TEST_VERBOSE environment variable),

Test::Class outputs the name of the test method before it runs any tests for

that method. This is a nice way to see where certain tests come from while

debugging. Also, if you don’t specify test descriptions in your test

functions, Test::Class uses the name of the current test method as the test

description.

What about...
Q: Should I use Test in all of my module names?

A: The standard naming convention for unit testing is to suffix the class

name you’re testing with Test. The example code in this lab used this

convention for clarity, but naming your classes like this isn’t completely

necessary.

An alternative naming scheme for the test classes is to name them in the

manner of other object-oriented modules. For example, the

Queue::Test::Word class inherits from Queue::Test. Opinions vary on

which is the best approach, so choose the style that fits your team and

project.

Q: What if I distribute this module? Will my test classes install along with

my other modules?

A: If your Makefile.PL or Build.PL doesn’t explicitly state what modules

it’s going to install, yes. By default, ExtUtils::MakeMaker and

Module::Build look in the lib/ directory of the distribution for any modules

to install. If you don’t want to install your test classes, see "Using

Temporary Databases" in Chapter 6, which describes using a separate

build_lib/ directory for the testing-related modules.

Of course, if your project is a framework you expect people to subclass,

installing the test modules will allow them to inherit tests as well.

Q: Can I control the order in which the tests run?

A: Test::Class runs all groups of tests in alphabetical order. First, all

startup methods run in alphabetical order. Next, the test methods run in

alphabetical order. Finally, the shutdown methods run in alphabetical order.

For every test method, its setup methods run in alphabetical order. Then the

test method itself runs. Finally, its teardown methods run in alphabetical

order. (”Creating Test Fixtures,” next, explains setup and teardown methods

and fixtures.)

Creating Test Fixtures
Imagine writing tests for your car. If you turn the wheel, do the tires turn

left? What about right? If you hit the brakes, do the rear lights light up? Of

course, before you can perform any of these tests, you need to open the

door, sit in the driver’s seat, put on the seat belt, and start the car. When

you’re done, you must stop the car, unbuckle, and disembark. What a pain it

would be to perform each step for each individual test—you’d have to get

in and start the car three times!

It would be much easier if, before each test, your car arrived fully prepared

and then magically transported you to the driver’s seat, buckled you in, and

fastened your crash helmet securely. This is exactly what fixtures are: parts

of an environment created before tests run and removed after the tests

finish.

This lab shows how to create fixtures for your tests using setup and

teardown methods, which eliminates duplication and makes your test code

more sane.

How do I do that?
Copy the Queue module and queue.t test file from "Writing Test Cases.”

However, the test module needs to change slightly. The new Queue::Test

needs a new method, setup_queues(), to create a test fixture for the other

test methods to use.

Save the following code as Queue/Test.pm:

 package Queue::Test;

 use base 'Test::Class';

 use Queue;
 use Test::More;

 sub setup_queues : Test(setup => 2)
 {
 my ($self) = @_;

 $self->{empty} = Queue->new();
 $self->{twoitems} = Queue->new(qw(howdy bonjour));

 isa_ok($self->{$_}, 'Queue') for qw(empty twoitems);
 }

 sub size : Test(2)
 {
 my ($self) = @_;
 is($self->{empty}->size(), 0, 'an empty queue'
);
 is($self->{twoitems}->size(), 2, 'a queue with some
elements');
 }

 sub enqueue : Test(1)
 {
 my ($self) = @_;
 $self->{twoitems}->enqueue($_) for qw(ciao yo);
 is($self->{twoitems}->size(), 4, 'queue is now larger'
);
 }

 sub dequeue : Test(3)
 {
 my ($self) = @_;

 is($self->{empty}->dequeue(), undef, 'empty
queue');

 is($self->{twoitems}->dequeue(), 'howdy', 'first item'
);
 is($self->{twoitems}->dequeue(), 'bonjour', 'second
item');
 }

 1;

Run queue.t verbosely with prove:

 $ prove -v queue.t
 queue....#
 # Queue::Test->dequeue
 1..12
 ok 1 - The object isa Queue
 ok 2 - empty queue
 ok 3 - queue is now larger
 ok 4 - first item
 ok 5 - second item
 ok 6 - queue is now smaller
 #
 # Queue::Test->enqueue
 ok 7 - The object isa Queue
 ok 8 - queue is now larger

 #
 # Queue::Test->size
 ok 9 - The object isa Queue
 ok 10 - an empty queue
 ok 11 - The object isa Queue
 ok 12 - a queue with some elements
 ok
 All tests successful.
 Files=1, Tests=12, 0 wallclock secs (0.16 cusr + 0.03 csys
= 0.19 CPU)

What just happened?
Every test method receives a hash reference as its first argument. This is the

test object, and it exists to pass data from the fixtures to the tests. Feel free

to add whatever you want to it.

Notice the output of prove -v? There are a total of six isa checks, yet

setup_queues() is the only method that calls isa_ok(), and it does so only

twice. What happened? setup_queues() has the attribute Test(setup=> 2).

NOTE
Test(setup)is the same as Test(setup =>0). The same goes for the teardown, startup, and shutdown
attributes. It never hurts to be verbose, though.

The setup_queues() method prepares and checks the type of two Queue

objects that all of the test methods use. Test::Class calls setup_queue()

before each test method, so it runs three times in this test file. Each test

method receives two fresh Queue objects in the test object. This simplifies

the testing code by eliminating duplicate code, making it easier to add new

tests.

What about...
Q: What if I need to clean up the fixture after each test?

A: Use a teardown method by creating a new method with the attribute

Test(teardown => n). Teardown methods run after each test method.

Q: Is it possible to have setup and teardown methods for the entire class?

A: Sure! Test::Class calls these startup and shutdown methods. Declare

them with the attributes Test(startup => n) and Test(shutdown => n),

respectively. Each startup and shutdown method runs only once per test file.

It receives the test object as the first argument, just like the other test

methods.

Because startup methods run only once at the beginning of the test, they do

not have the chance to reinitialize whatever they store in the test object as

setup methods do.

Inheriting Tests
Your boss thinks highly of your new, shiny Queue module. “Great,” she

says, “but we need a subclass that will enqueue only single, unhyphenated

words.” Before you became a confident tester, this might have worried you.

It’s not scary anymore, though.[1] Thanks to Test::Class, there’s not much

more to do.

This lab explains how to write tests for subclasses when you already have

Test::Class tests for their parents.

How do I do that?
A subclass inherits from a parent class, so why not have tests inherit from a

parent test? Except for the enqueue() method, the features of the two classes

are the same. Because the tests for Queue enqueue only words, you can

reuse the test methods declared in Queue::Test.

Create the directory Queue/Word/, and save the following as

Queue/Word/Test.pm:

 package Queue::Word::Test;

 use base 'Queue::Test';

 use Queue::Word;
 use Test::More;
 use Test::Exception;

 sub setup_queues : Test(setup => 2)
 {
 my ($self) = @_;

 $self->{empty} = Queue::Word->new();
 $self->{twoitems} = Queue::Word->new(qw(howdy bonjour
));

 isa_ok($self->{$_}, 'Queue::Word') for qw(empty
twoitems);
 }

 sub check_only_words : Test(5)
 {
 my ($self) = @_;

 lives_ok { $self->{empty}->enqueue('wassup') } "can
enqueue words";
 lives_ok { $self->{empty}->enqueue('HeLlO') } "case
doesn't matter";
 dies_ok { $self->{empty}->enqueue(1981) } "can't enqueue
integers";
 dies_ok { $self->{empty}->enqueue(10.9) } "can't enqueue
decimal";
 dies_ok { $self->{empty}->enqueue('Transzorp Diode') }
 "can't enqueue names of cyborgs";
 }

 1;

Next, create the Queue::Word module that extends Queue. Save the following

code as Queue/Word.pm:

 package Queue::Word;

 use strict;
 use warnings;

 use base 'Queue';

 sub enqueue
 {
 my ($self, $item) = @_;

 die "can only enqueue words, not '$item'"
 unless $item =~ m/ ^ [A-Z]+ $ /ix;

 push @$self, $item;
 }

 1;

Now create a test file, queue_word.t, so that it runs the tests for both

classes. Save the following code as queue_word.t:

 #!perl

 use Queue::Test;
 use Queue::Word::Test;

 Test::Class->runtests();

Run it with prove:

 $ prove queue_word.t
 queue_word....ok
 All tests successful.

 Files=1, Tests=31, 1 wallclock secs (0.07 cusr + 0.00 csys
= 0.07 CPU)

What just happened?
Because Queue::Word::Test is a subclass of Queue::Test, it inherits all the

test methods from Queue::Test. It must override setup_queues() so that the

fixture creates objects of the proper class, though.

There’s no practical benefit in rewriting the tests for size() and dequeue(),

as the subclass does not change their behavior. The enqueue() method,

however, is more restrictive with its arguments. check_only_words() tests

that the program dies when it receives invalid arguments.

Calling runtests() tells Test::Class to run all tests in both loaded test

classes. Because the test subclass adds additional testing methods, the

queue_word.t test file runs more tests than did the queue.t test file.

[1] Of course, you might worry if she could see the paper clip trebuchet you’ve been using to fire
paper clips at coworkers.

Skipping Tests with Test::Class
If you need to skip the tests for a class, you might want to skip the tests for

any of its subclasses as well. If you’ve set up your test class hierarchy to

mimic your real class hierarchy, this is easy to do.

How do I do that?
"Inheriting Tests" showed how to set up tests for the Queue::Word module

and its parent class, Queue. Similarly, the test classes for these modules were

Queue::Word::Test and Queue::Test, respectively. Suppose that your

project lead won’t let you run the tests for Queue::Test and any of its

subclasses after four o’clock because he doesn’t believe you’ll have time to

fix them before you leave for the day.

Alter Queue/Test.pm as follows:

 package Queue::Test;

 use base 'Test::Class';

 use Queue;
 use Test::More;

 sub SKIP_CLASS
 {
 return [localtime(time)]->[2] < 16 ? 0 : 'only runs
before tea time';
 }

 sub setup_queues : Test(setup => 2)
 {
 # ...
 }

Run queue.t with prove after four o’clock to see that it skips tests in both

Queue::Test and Queue::Word::Test:

 $ prove -v queue.t
 queue....1..2
 ok 1 # skip only runs before tea time
 ok 2 # skip only runs before tea time
 ok
 2/2 skipped: only runs before tea time
 All tests successful, 2 subtests skipped.

 Files=1, Tests=2, 0 wallclock secs (0.05 cusr + 0.00 csys
= 0.05 CPU)

What about...
Q: Can I skip tests for just one particular class?

A: Sure. Instead of overriding the SKIP_CLASS() method, simply call it on

your class and pass it the reason for skipping the tests. Perhaps you want to

to skip the tests for Queue::Test if they run in the morning, but you don’t

want to affect its subclasses. Modify Queue/Test.pm as follows:

 package Queue::Test;

 use base 'Test::Class';

 use Queue;
 use Test::More;

 Queue::Test->SKIP_CLASS(
 [localtime(time)]->[2] <= 12
 ? 'only runs in the afternoon'
 : 0
);

 sub size : Test(4)
 {
 # ...
 }

Marking Tests as TODO with Test::Class
If you’ve written the tests for a class but you haven’t yet written the

implementation, mark the tests as TODO. That way, everyone will know

that you expect them to fail. If they succeed, it’ll be a nice surprise.

How do I do that?
Test::Class allows you to mark tests in the same manner as tests using

Test::More. Simply localize the $TODO variable with the reason why you’re

putting them off.

Ponder yet again the Queue module and its test module, Queue::Test, from

"Writing Test Cases.” Imagine that your boss wants you to modify

enqueue() to refuse to queue undefined values. It’s 4:45 p.m. and you want

to code the tests so you’ll remember your brilliant idea in the morning.

Modify Queue/Test.pm as follows:

 sub enqueue : Test(3)
 {
 my $queue = Queue->new;
 isa_ok($queue, 'Queue');

 $queue->enqueue($_) for qw(howdy bonjour);
 is($queue->size(), 2, 'queue is now larger');

 local $TODO = 'decided to disallow undefined items';
 $queue->enqueue(undef);
 is($queue->size(), 2, "queue size hasn't changed");
 }

Run queue.t to show that the test fails but has a TODO declaration, just as do

the regular TODO tests of Test::More. Now you can go home, confident

that you will remember what Queue.pm has to do when you return to work

in the morning.

What about...
Q: Can I mark an entire class as TODO?

A: Unfortunately, Test::Class doesn’t provide a simple way to do this. It’s

probably easier just to skip the tests (see "Skipping Tests with Test::Class,”

earlier in this chapter).

Chapter 9. Testing Everything Else
As pleasant as it might be to believe otherwise, there’s a whole world

outside of Perl. Fortunately, Perl works well with other programs and other

languages, even to the point at which you can use them almost seamlessly

from your Perl code.

Good testers don’t shy away from testing external code just because it

seems difficult. You can use Perl’s nice testing libraries and the tricks

you’ve learned so far even if you have to test code written in other

languages or programs you can’t modify. Perl’s that flexible.

This chapter’s labs demonstrate how to test Perl programs that you can’t

refactor into modules, how to test standalone programs, and how to test

code that isn’t Perl at all.

Writing Testable Programs
Not every useful piece of Perl code fits in its own module. There’s a wealth

of worthwhile code in scripts and programs. You know the rule: if it’s worth

using, it’s worth testing. How do you test them? Write them to be as testable

as possible.

NOTE
Simple, well-factored code is easier to test in isolation. Improving the design of your code is just
one of the benefits of writing testable code.

How do I do that?
Imagine that you have a program that applies filters to files given on the

command line, sorting and manipulating them before printing them. Save

the following file as filefilter.pl:

 #!perl

 use strict;
 use warnings;

 main(@ARGV) unless caller();

 sub main

 {
 die "Usage:\n$0 <command> [file_pattern]\n" unless @_;

 my $command = shift;
 my $command_sub = main->can("cmd_$command");
 die "Unknown command '$command'\n" unless $command_sub;

 print join("\n", $command_sub->(@_));
 }

 sub sort_by_time
 {
 map { $_->[0] }
 sort { $a->[1] <=> $b->[1] }
 map { [$_, -M $_] } @_
 }

 sub cmd_latest
 {
 (sort_by_time(@_))[0];
 }

 sub cmd_dirs
 {
 grep { -d $_ } @_;
 }

 # return true
 1;

Testing this properly requires having some test files in the filesystem or

mocking Perl’s file access operators (”Overriding Built-ins" in Chapter 5).

The former is easier. Save the following program as make_test_files.pl:

NOTE
filefilter.pl ends with “1;” so that the require()will succeed.See perldoc -f require to learn more.

 #!perl

 use strict;
 use warnings;

 use Fatal qw(mkdir open close);
 use File::Spec::Functions;

 mkdir('music_history') unless -d 'music_history';

 for my $subdir (qw(handel vivaldi telemann))

 {
 my $dir = catdir('music_history', $subdir);
 mkdir($dir) unless -d $dir;
 }

 sleep 1;

 for my $period (qw(baroque classical))
 {
 open(my $fh, '>', catfile('music_history', $period));
 print $fh '18th century';
 close $fh;
 sleep 1;
 }

Save the following test as test_filefilter.t:

 #!perl

 use strict;
 use warnings;

 use Test::More tests => 5;
 use Test::Exception;

 use File::Spec::Functions;

 ok(require('filefilter.pl'), 'loaded file okay') or exit;

 throws_ok { main() } qr/Usage:/,
 'main() should give a usage error without any arguments';

 throws_ok { main('bad command') } qr/Unknown command 'bad
command'/,
 '... or with a bad command given';

 my @directories =
 (
 'music_history',
 map { catdir('music_history', $_) } qw(handel vivaldi
telemann)
);

 my @files = map { catfile('music_history', $_) } qw(
baroque classical);

 is_deeply([cmd_dirs(@directories, @files)],
\@directories,
 'dirs command should return only directories');

 is(cmd_latest(@files), catfile(qw(music_history classical

)),
 'latest command should return most recently modified
file');

NOTE
Baroque preceded Classical, of course.

Run make_test_files.pl and then run test_filefilter.t with prove:

 $ prove test_filefilter.t
 test_filefilter....ok
 All tests successful.
 Files=1, Tests=5, 0 wallclock secs (0.08 cusr + 0.02 csys
= 0.10 CPU

What just happened?
The problem with testing Perl programs that expect to run directly from the

command line is loading them in the test file without actually running them.

The strange first code line of filefilter.pl accomplishes this. The caller()

operator returns information about the code that called the currently

executing code. When run directly from the command line, there’s no caller

information, and the program passes its arguments to the main() subroutine.

When run from the test script, the program has caller information, so it does

nothing.

The rest of the program is straightforward.

The test file requires the presence of some files and directories to test

against. Normally, creating test data from within the test itself works, but in

this case, part of the filter program relies on Perl’s behavior when checking

the last modification time of a file. Because Perl reports this time relative to

the time at which the test started, it’s much easier to create these files before

running the test. Normally, this might be part of the build step. Here, it’s a

separate program: make_test_files.pl. The sleep line attempts to ensure that

enough time passes between the Baroque and the Classical periods that the

filesystem can tell their creation times apart.[2]

The test uses require() to load the program. Test::More::require_ok() is

inappropriate here because it expects to load modules, not programs. The

rest of the test is straightforward.

NOTE
The test is incomplete, though; how would you test the printing behavior of main()?

What about...
Q: What if I run this code on a filesystem that can’t tell the difference

between the modification times of baroque and classical?

A: That’s one purpose of the test. If the test fails, you might need to modify

filefilter.pl to take that into account. Start by increasing the value of the

sleep call in make_test_files.pl and see what the limits of your filesystem

are.

Q: What if the program being tested calls exit() or does something

otherwise scary?

A: Override it (see "Overriding Built-ins" in Chapter 5).

Q: When would you do this instead of running filefilter.pl as a separate

program (see "Testing Programs,” next)?

A: This technique makes it easier to test the program’s internals. Running it

as a separate program means that your test has to treat the entire program as

a black box. Note that the test here doesn’t have to parse the program’s

output; it handles the list returned from cmd_dirs(), and the scalar returned

from cmd_latest() as normal Perl data structures.

[2] Sure, that’s 150 years of musical history, but computers don’t have much culture.

Testing Programs
Perl’s a great glue language and there are a lot of other programs in the
world worth gluing together—or at least using from your own programs.
Maybe your project relies on the behavior of other programs not under your
control. That makes them worth testing. Maybe your job is testing, and
you’ve realized that Perl and its wealth of testing libraries would be nice to
have to test code written in other languages.

Whatever your motivation, Perl is perfectly capable of testing external
programs. This lab shows how.

If you have one program on your machine to run all of the examples in this
book, it’s the Perl executable itself. That makes it a great candidate to test,
especially for things you can’t really test from within Perl. For example, the
Perl core has its own test suite. How does it test Perl’s command-line flags
that print messages and exit? How does it test whether bad code produces
the correct fatal compiler warnings? It runs a fresh Perl instance and
examines its output.

You can do the same.

NOTE
See _fresh_perl() and _fresh_perl_ is()in t/test.pl in the Perl source code.

How do I do that?
Save the following test file as perl_exit.t:

 #!perl

 use strict;
 use warnings;

 use IPC::Run 'run';
 use Test::More tests => 7;

 my ($out, $err) = runperl('-v');
 like($out, qr/This is perl/, '-v should print short version
message');
 is($err, '', '... and no error'
);

 ($out, $err) = runperl('-V') ;
 like($out, qr/Compiled at/, '-V should print extended
version message');
 is($err, '', '... and no error'
);

 ($out, $err) = runperl(qw(-e x++));
 like($err, qr/Can't modify constant.+postincrement/,
 'constant modification should die
with error');
 like($err, qr/Execution.+aborted.+compilation errors/,
 '... aborting with to compilation
errors');
 is($out, '', '... writing nothing to standard
output');

 sub runperl
 {
 run([$^X, @_], \my($in, $out, $err));
 return ($out, $err);
 }

NOTE
The special variable $^X contains the path to the currently running Perl executable. It comes up
often in testing.

Run the test file with prove:

 $ prove perl_exit.t
 perl_exit....ok
 All tests successful.
 Files=1, Tests=6, 1 wallclock secs (0.28 cusr + 0.05 csys
= 0.33 CPU)

What just happened?
The IPC::Run module provides a simple and effective cross-platform way to
run external programs and collect what they write to standard output and
standard error.

The test file defines a subroutine called runperl() to abstract away and
encapsulate all of the IPC::Run code. It calls run() with four arguments.
The first argument is an array reference of the program to run—here always
$^X—and its command-line options. The other arguments are references to
three scalar variables to use for the launched program’s STDIN, STDOUT, and

STDERR handles. runperl() returns only the last two handles, which
IPC::Run has helpfully connected to the output of the program.

NOTE
None ofthe tests yet need to pass anything to the launched program, so returning $in is useless.

Each set of tests starts by calling runperl() with the arguments to use when
running Perl. The first run performs the equivalent of:

 $ perl -v

 This is perl, v5.8.6 built for powerpc-linux

 Copyright 1987-2004, Larry Wall

 Perl may be copied only under the terms of either the
Artistic License or the GNU
General Public License, which may be found in the Perl 5 source
kit.

 Complete documentation for Perl, including FAQ lists, should
be found on
 this system using 'man perl' or 'perldoc perl'. If you have
access to the
 Internet, point your browser at http://www.perl.org/, the
Perl Home Page.

The tests check to see that the entire message goes out to standard output,
with nothing going to standard error.

The second set of tests uses Perl’s -V, or verbose, flag to display an even
longer version message, which includes information about the compile-time
characteristics of Perl as well as the contents of @INC.

Finally, the last set of tests exercise Perl’s handling of an error, specifically
leaving the sigil off of a variable. This test is equivalent to the one-liner:

NOTE
Try perl -V yourself. It’s a lot of output.

 $ perl -e "x++"
 Can't modify constant item in postincrement (++) at -e line
1, near "x++"
 Execution of -e aborted due to compilation errors.

All of this output should go to standard error, not standard output. The final
test in this set ensures that.

What about...
Q: Are there any modules that integrate this with Test::Builder for me?

A: Test::Cmd and Test::Cmd::Common have many features, but they also
have complex interfaces. They may work best for large or complicated test
suites.

Testing Interactive Programs
Unfortunately for testers, lots of useful programs are more than modules,

well-factored Perl programs, or shared libraries. They have user interfaces,

take input from the keyboard, and even produce output to the screen.

It may seem daunting to figure out how to mock all of the inputs and

outputs to test the program. Fortunately, there’s a solution. Test::Expect

allows you to run external programs, feeding them input and checking their

output, all within your test files.

How do I do that?
Think back to your early programming days, when the canonical example

of accepting user input was building a calculator. In Perl, you may have

written something like simplecalc.pl:

 #!perl

 use strict;
 use warnings;

 print "> ";

 while (<>)
 {
 chomp;
 last unless $_;

 my ($command, @args) = split(/\s+/, $_);

 my $sub;
 unless ($sub = _ _PACKAGE_ _->can($command))
 {
 print "Unknown command '$command'\n> ";
 next;
 }

 $sub->(@args);
 print "> ";
 }

 sub add
 {
 my $result = 0;

 $result += $_ for @_;
 print join(" + " , @_), " = $result\n";
 }

 sub subtract
 {
 my $result = shift;

 print join(" - " , $result, @_);

 $result -= $_ for @_;
 print " = $result\n";
 }

Save the file and play with it. Enter the commands add or subtract,

followed by multiple numbers. It will perform the appropriate operation and

display the results. If you give an invalid command, it will report an error.

Enter a blank line to quit.

It’s tempting to test this program with the technique shown earlier in

"Writing Testable Programs,” but the loop is central to the program and

difficult to test. Alternately, what if your assignment were to write this code

in another language? Fortunately, the same testing technique works for both

possibilities.

Save the following test file as testcalc.t:

 #!perl

 use strict;
 use Test::More tests => 7;
 use Test::Expect;

 expect_run(
 command => "$^X simplecalc.pl",
 prompt => '> ',
 quit => "\n",
);

 expect('add 1 2 3', '1 + 2 + 3 = 6', 'adding three
numbers');
 expect_send('subtract 1 2 3', 'subtract should
work');
 expect_is('1 - 2 - 3 = -4', '.. producing
good results');
 expect_send('weird magic', 'not dying on
bad input');
 expect_like(qr/Unknown command 'weird/, '... but giving
an error');

Run it from the directory containing simplecalc.pl:

 $ prove testcalc.t
 testcalc....ok
 All tests successful.
 Files=1, Tests=7, 0 wallclock secs (0.27 cusr + 0.02 csys
= 0.29 CPU)

What just happened?
The test file begins with a call to expect_run() to tell Test::Expect about

the program to automate. The command argument provides the command to

launch the program. In this case, it needs to launch simplecalc.pl with the

currently executing Perl binary ($^X). The program’s prompt is "> “, which

helps the module know when the program awaits input. Finally, the quit

argument contains the sequence to end the program.

NOTE
Test::Expect works like the Expect automation tool, which also has Perl modules in the form of
Expect. pm and Expect:: Simple.

The first test calls expect(), passing the command to send to the program

and the output expected from the program. If those match, the test passes—

actually twice, once for being able to send the data to the program correctly

and the second time for the actual results matching the expected results.

The next test uses expect_send() to send data to the program. Though

there’s nothing to match, this test passes if the program accepts the input

and returns a prompt.

Now that the program has sent some data, the test can check the results of

the last operation by calling expect_is() to match the expected data

directly. It works just like Test::More::is(), except that it takes the

received data from the program run through Test::Expect, not from an

argument to the function.

The expect_like() function is similar. It applies a regular expression to the

data returned from the last operation performed by the program.

What about...

Q: That’s pretty simple, but I need to use more prompts and handle

potential errors. What can I do?

A: Test::Expect uses Expect::Simple internally. The latter module

provides more options to drive external programs. You may have to use

Test::More::is() and Test::More::like() to perform comparisons, but

Expect::Simple handles the messy work of connecting to and driving an

external program.

Testing Shared Libraries
Here’s a secret: Perl’s testing modules aren’t just good for testing Perl. They

can test anything you can call from Perl. With a little bit of help from a few

other modules, it’s easy to test shared libraries—compiled C code, for

example—as if it were normal Perl code.

NOTE
You must have the Inline::C module installed and you must have a C compiler available and
configured.

How do I do that?
Suppose that you want to test your C math library, libm. Specifically, you

need to exercise the behavior of the fmax() and fmin() functions, which

find the maximum or minimum of two floating point values, respectively.

Save the following code as test_libmath.t:

 #!perl

 BEGIN
 {
 chdir 't' if -d 't';
 }

 use strict;
 use warnings;
 use Test::More tests => 6;

 use Inline C =>
 Config =>
 LIBS => '-lm',
 ENABLE => 'AUTOWRAP'
 ;

 Inline->import(C => <<END_HEADERS);
 double fmax(double, double);
 double fmin(double, double);
 END_HEADERS

 is(fmax(1.0, 2.0), 2.0, 'fmax() should find maximum of
two values');
 is(fmax(-1.0, 1.0), 1.0, '... and should handle one
negative');

 is(fmax(-1.0, -7.0), -1.0, '... or two negatives'
);
 is(fmin(9.3, 1.7), 1.7, 'fmin() should find minimum of
two values');
 is(fmin(2.0, -1.0), -1.0, '... and should handle one
negative');
 is(fmin(-1.0, -6.0), -6.0, '... or two negatives'
);

Run the tests with prove:

 $ prove test_math.t
 test_math....ok
 All tests successful.
 Files=1, Tests=6, 0 wallclock secs (0.17 cusr + 0.01 csys
= 0.18 CPU)

What just happened?
The Inline::C module allows easy use of C code from Perl. It’s a powerful

and simple way to build or to link to C code without writing Perl extension

code by hand. The test starts as usual, changing to the t/ directory and

declaring a plan. Then it uses Inline, passing some configuration data that

tells the module to link against the m library (libm.so on Unix and Unix-like

systems) and generate wrappers for C functions automatically.

NOTE
Inline::C caches compiled code an_Inline/directory. The test file changes to t/to localize the cache
in the test subdirectory.

The only C code necessary to make this work occurs in the import() call,

which passes the function signatures of the C functions to wrap from the

math library. When Inline processes this code, it writes and compiles some

C code to create the wrappers from these functions, and then makes the

wrappers available to the test as the functions fmax() and fmin().

The rest of the test file tests some of the boundary conditions for these two

functions.

What about...
Q: Does this work with other languages besides C?

A: There are Inline modules for various languages, including C++, Java,

and PHP. The same or similar techniques work there too.

Q: Can I achieve the same thing by using XS or SWIG to generate

bindings?

A: Absolutely. Inline is very easy for simple and moderate bindings, but it

doesn’t do anything that you can’t do elsewhere.

Q: Can Inline handle passing and returning complex data structures such

as C-structs?

A: Yes. See the Inline::C cookbook from the Inline distribution for

examples.

Index
A NOTE ON THE DIGITAL INDEX

A link in an index entry is displayed as the section title in which that entry appears. Because some
sections have multiple index markers, it is not unusual for an entry to have several links to the
same section. Clicking on any link will take you directly to the place in the text in which the
marker appears.

Symbols

$@ variable, What just happened?

$^X variable, What about..., What just happened?

%INC variable, What about...

-v (verbose) option, prove command, What about..., Loading Modules,
What just happened?, What just happened?

@INC variable, Interpreting Test Results, What about...

__DATA__ literal, What just happened?

“kwalitee”, validating, Testing Documentation Coverage, What about?,
What about...

“Running and Developing Tests with the Apache::Test Framework”, Where
to learn more

A

Active Perl, ppm utility, Through PPM

all_pod_coverage_ok() function, Test::Pod::Coverage module, What just
happened?

all_pod_files_ok() function, Test::Pod module, What just happened?

analyze_file() function, Test::Harness::Straps module, What just happened?

Apache modules, How do I do that?, Testing with Apache-Test, How do I
do that?

Apache server for testing of, How do I do that?

distributing, How do I do that?

testing, Testing with Apache-Test

Apache server, for automated tests, How do I do that?

Apache-Test, How do I do that?, Testing with Apache-Test, How do I do
that?

distributing Apache modules with, How do I do that?

running Apache server with, How do I do that?

testing Apache modules with, Testing with Apache-Test

Apache::Test module, What just happened?, Where to learn more

Apache::TestMB module, What just happened?

Apache::TestRequest module, What about...

Apache::TestUtil module, What just happened?

APACHE_TEST_HTTPD variable, How do I do that?, What just
happened?

array_each() function, Test::Deep module, What just happened?

automating test runs, What just happened?

B

bag() function, Test::Deep module, Where to learn more

BEGIN blocks, What about..., What about..., How do I do that?

generating accessors with, How do I do that?

wrapping use_ok() function in, What about...

binary data, comparing, What about...

branch coverage, What just happened?

browsing sessions, recording and playing back, Record and Play Back
Browsing Sessions

Build.PL program, What about..., What about..., What just happened?

built-in functions, overriding, Overriding Built-ins

built-in operators, overriding, Overriding Built-ins

C

C libraries, testing, Testing Shared Libraries

C++ code, testing, How do I do that?

caller() operator, What about...

can() method, What about...

can_ok() function, Test::More module, What just happened?

Class::DBI module, How do I do that?, What just happened?

Class::DBI::Loader module, How do I do that?

Class::DBI::Loader::Relationship module, How do I do that?

classes, tests for, Creating Test Fixtures, Inheriting Tests, What just
happened?, How do I do that?

incomplete, marking as TODO, How do I do that?

inheriting, Inheriting Tests

methods run before and after, Creating Test Fixtures

skipping, What just happened?

cmp_deeply() function, Test::Deep module, What just happened?

cmp_ok() function, Test::More module, What just happened?

code coverage, Checking Your Coverage

code examples in this book, permission to use, Using Code Examples

comparisons, What about..., What about..., Data Composition

binary data, What about...

data structure elements, Data Composition

data structure equality, What about...

compilation failures, Improving Test Comparisons

condition coverage, What just happened?

contact information for this book, Using Code Examples

conventions used in this book, Conventions Used in This Book

CORE::GLOBAL namespace, What just happened?

coverage, How do I do that?, Testing Documentation Coverage

of code, How do I do that?

of documentation, testing, Testing Documentation Coverage

CPAN modules, installing, Installing Test Modules

cpan script, Through PPM

CPAN shell, installing modules using, Installing Test Modules

CPAN Testers site, Bundling Tests with Modules

CPANTS (CPAN Testing Service), What about...

D

data structures, What about..., What about..., What about..., Data
Composition, What about..., Where to learn more, Where to learn more

checking elements of, Data Composition

elements changing in, Where to learn more

ignoring specific values in, What about...

order of elements unknown for, Where to learn more

showing differences between, What about..., What about...

testing equality of, What about...

databases, Shipping Test Databases, How do I do that?, What about..., How
do I do that?, What about..., Testing Your Backend, What just happened?

as backend for web site, testing, Testing Your Backend

data in, testing, How do I do that?

mocking, What about...

temporary, How do I do that?

test databases, Shipping Test Databases, What about..., What just
happened?

cleaning up data after test, What just happened?

deleting after test, What about...

shipping, Shipping Test Databases

DBD::AnyData driver, What just happened?

DBD::Mock module, What just happened?

DBD::SQLite driver, What just happened?

DBI module, Shipping Test Databases, What just happened?

Devel::Cover module, How do I do that?

die() function, Test::More module, Improving Test Comparisons

directory hierarchy for modules, What just happened?

distribution signatures, How do I do that?

distributions, testing, How do I do that?

documentation coverage, Testing Documentation Coverage

E

END blocks, What just happened?

eq_or_diff() function, Test::Differences module, What about..., What
about...

examples in this book, permission to use, Using Code Examples

exceptions, testing, How do I do that?

exit() operator, overriding, Overriding Operators Everywhere

expect*() functions, Test::Expect module, What just happened?

Expect::Simple module, Testing Shared Libraries

external programs, testing, Testing Programs

ExtUtils::MakeMaker module, What about..., What just happened?

F

follow_link_ok() function, Test::WWW::Mechanize module, Testing the
Validity of HTML

fonts used in this book, Conventions Used in This Book

functions, built-in, overriding, Overriding Built-ins

G

GET*() functions, Apache::TestRequest module, What about...

get_ok() function, Test::WWW::Mechanize module, Testing the Validity of
HTML

GnuPG, How do I do that?

H

hash ordering, How do I do that?

HEAD() function, Apache::TestRequest module, What about...

HTML validity, testing, Testing the Validity of HTML

html_ok() function, Test::HTML::Lint module, How do I do that?

html_tidy_ok() function, Test::HTML::Tidy module, How do I do that?

HTTP::Recorder module, Record and Play Back Browsing Sessions, What
just happened?

I

ignore() function, Test::Deep module, What about...

import() method, Inline::C module, How do I do that?

Inline::C module, How do I do that?, How do I do that?

interactive programs, testing, What about...

IPC::Run module, What just happened?

is() function, Test::More module, What just happened?

isa_ok() function, Test::More module, What just happened?

isnt() function, Test::More module, What about...

is_deeply() function, Test::More module, What about...

is_string() function, Test::LongString module, What about...

J

Java code, testing, How do I do that?

L

libraries, Writing a Testing Library, Testing a Testing Library, Testing
Shared Libraries

shared libraries, testing, Testing Shared Libraries

testing library, Writing a Testing Library, Testing a Testing Library

testing, Testing a Testing Library

writing, Writing a Testing Library

like() function, Test::More module, What just happened?

live code, overriding, Overriding Live Code

lives_ok() function, Test::Exception module, What about...

local() operator, What just happened?

M

make test program, Running Tests

Makefile.PL program, What about..., What just happened?

MCPAN option, perl program, Through PPM

mech-dump utility, WWW::Mechanize module, Record and Play Back
Browsing Sessions

mock() method, Test::MockModule module, What about..., What just
happened?

mocking, Testing Untestable Code, Mocking Modules, What about...,
Partially Mocking Objects, What about...

databases, What about...

modules, Mocking Modules

objects, What about...

objects, partially, Partially Mocking Objects

Model-View-Controller (MVC) pattern, How do I do that?

module-starter command, Module::Starter module, What just happened?

Module::Build module, What about..., What about..., How do I do that?,
How do I do that?, What just happened?

custom subclass for, How do I do that?

installation of test modules using, What about...

running tests using, What about...

Module::Build::TestReporter module, Collecting Test Results, What just
happened?

Module::Signature module, How do I do that?

Module::Starter module, What just happened?

modules, How do I do that?, What about..., Loading Modules, What just
happened?, What just happened?, What about..., What just happened?,
What just happened?, What about..., Creating Test Fixtures

bundling tests with, What just happened?

directory hierarchy for, What just happened?

distributing, Creating Test Fixtures

distribution name for, determining, What about...

ensuring that test files can load, What just happened?

installed by user, tests run when, What about...

installing, How do I do that?

installing, tests run when, What just happened?

loading for tests, Loading Modules

mocking, What about...

MVC (Model-View-Controller) pattern, How do I do that?

N

need_module() function, Apache::Test module, What just happened?

network, running tests across, Testing Across the Network

new() method, Test::Builder module, What just happened?

next_call() method, Test::MockObject module, What about...

nmake.exe, By hand

not_row_ok() function, Test::DatabaseRow module, What just happened?

O

objects, What about..., Partially Mocking Objects

mocking, What about...

mocking partially, Partially Mocking Objects

ok() function, Test::Simple module, What about..., Improving Test
Comparisons

operators, Overriding Built-ins, Overriding Operators Everywhere

built-in, overriding, Overriding Built-ins

overriding, Overriding Operators Everywhere

P

package variables, changing for tests, Overriding Live Code

page_links_ok() function, Test::WWW::Mechanize module, Record and
Play Back Browsing Sessions

Perl, Preface, What This Book Covers, What about...

compilation environment for, setting up, What about...

history of automated testing for, Preface

version requirements for, What This Book Covers

PERL5LIB variable, using PREFIX with, What about...

PHP code, testing, How do I do that?

Plain Old Documentation (POD) format, Distributing Your Tests (and
Code), Testing POD Files

plan() function, How do I do that?, What just happened?

Apache::Test module, What just happened?

Test::More module, How do I do that?

POD (Plain Old Documentation) format, Testing POD Files

POD files, Testing POD Files, Testing Documentation Coverage

testing coverage of, Testing Documentation Coverage

testing syntax of, Testing POD Files

PodMaster, list of ppm repositories, Through PPM

POST() function, Apache::TestRequest module, What about...

ppm utility, installing test modules using, Through PPM

programs, Testing Everything Else, Testing Programs, What about...

external, testing, Testing Programs

interactive, testing, What about...

testing, Testing Everything Else

prompt() function, How do I do that?, How do I do that?, Letting the User
Decide (Continued)

ExtUtils::MakeMaker module, How do I do that?

Module::Build module, How do I do that?, Letting the User Decide
(Continued)

prove program, What about..., Writing Your First Test, What about..., What
about...

diagnostic output, What about...

output from failed tests, What about...

running wrong number of tests, Writing Your First Test

PUT() function, Apache::TestRequest module, What about...

R

re() function, Test::Deep module, What just happened?

regular expressions, creating for comparisons, What just happened?

require() function, What about...

require_ok() function, Test::More module, What about...

results of tests, Interpreting Test Results, Collecting Test Results

collecting automatically, Collecting Test Results

interpreting, Interpreting Test Results

row_ok() function, Test::DatabaseRow module, What just happened?

runperl() function, IPC::Run module, What just happened?

runtests() function, Test::Class module, What just happened?, What just
happened?

S

scripts, testing, Writing Testable Programs

SERVERROOT variable, Testing with Apache-Test

setup attribute, Test::Class module, What just happened?

set_true() method, Test::MockObject module, What about...

shared libraries, testing, Testing Shared Libraries

shutdown attribute, Test::Class module, Inheriting Tests

SIGNATURE file, How do I do that?

signatures, distribution, How do I do that?

signature_ok() function, Test::Signature module, What just happened?

SKIP blocks, What just happened?

skip() function, Test::More module, What just happened?

SKIP_CLASS() method, What just happened?

skip_reason() function, Apache::Test module, What just happened?

smoketesting, What just happened?

startup attribute, Test::Class module, Inheriting Tests

statement coverage, What just happened?

stderr_is() function, Test::Output module, What about...

subclasses, tests for, Inheriting Tests

subhashof() function, Test::Deep module, Where to learn more

subroutine coverage, What just happened?, What just happened?

subroutine prototypes, How do I do that?

subs pragma, What just happened?

Subversion repository, smoketesting using, What about...

superhashof() function, Test::Deep module, Where to learn more

SVN::Client module, What about...

system() function, overriding, Overriding Built-ins

T

TAP (Test Anything Protocol), Interpreting Test Results

teardown attribute, Test::Class module, Inheriting Tests

temporary databases, How do I do that?

Test Anything Protocol (TAP), Interpreting Test Results

test cases, writing, Writing Test Cases

test databases, Shipping Test Databases, What about..., What just
happened?

cleaning up data after test, What just happened?

deleting after test, What about...

shipping, Shipping Test Databases

test fixtures, Creating Test Fixtures

test suites, automating, What just happened?

Test::Between module, What just happened?

Test::Builder module, Interpreting Test Results, Writing a Testing Library

Test::Builder::Tester module, How do I do that?

Test::Builder::Tester::Color module, Writing a Testing Harness

Test::Class module, Writing Test Cases, What just happened?

Test::Cmd module, What about...

Test::Cmd::Common module, What about...

Test::DatabaseRow module, How do I do that?, What just happened?

Test::Distribution module, How do I do that?

Test::Exception module, How do I do that?

Test::Expect module, What about...

Test::Harness module, Running Tests

Test::Harness::Straps module, Writing a Testing Harness, What just
happened?

Test::HTML::Lint module, How do I do that?

Test::HTML::Tidy module, How do I do that?

Test::Kwalitee module, What just happened?

Test::LongString module, What about...

Test::MockDBI module, What about...

Test::MockModule module, What just happened?, What just happened?

Test::MockObject module, What about...

Test::MockObject::Extends module, Partially Mocking Objects

Test::More module, Writing Your First Test, What just happened?,
Improving Test Comparisons

Test::NoWarnings module, Testing Exceptions

Test::Output module, What about...

Test::Output::Tie module, Overriding Operators Everywhere

Test::Pod module, What just happened?

Test::Pod::Coverage module, Testing Documentation Coverage, What just
happened?

Test::Signature module, How do I do that?, What just happened?

Test::Simple module, How do I do that?

Test::Warn module, Testing Warnings

Test::WWW::Mechanize module, How do I do that?, What just happened?

testing for Perl, history of, Preface

testing harness, Writing a Testing Harness, Testing Across the Network,
What about...

running across a network, Testing Across the Network

smoketesting with, What about...

writing, Writing a Testing Harness

testing library, Writing a Testing Library, Testing a Testing Library

testing, Testing a Testing Library

writing, Writing a Testing Library

tests, What about..., Loading Modules, Improving Test Comparisons, What
just happened?, Organizing Tests, What about..., How do I do that?, What
just happened?, Testing Entire Distributions, What just happened?, What
about?, Creating Test Fixtures, Inheriting Tests, Inheriting Tests, What just

happened?, How do I do that?, Writing Testable Programs, Writing Testable
Programs, Testing Programs, What about..., Testing Shared Libraries

automating, What just happened?

bundling with modules, What just happened?

compilation failures in, Improving Test Comparisons

coverage of, How do I do that?

distribution, Testing Entire Distributions

failed tests, determining, What about...

for classes, Creating Test Fixtures, Inheriting Tests, What just
happened?, How do I do that?

incomplete, marking as TODO, How do I do that?

inheriting, Inheriting Tests

methods run before and after, Creating Test Fixtures

skipping, What just happened?

for external programs, Testing Programs

for interactive programs, What about...

for programs, Writing Testable Programs

for scripts, Writing Testable Programs

for shared libraries, Testing Shared Libraries

for subclasses, Inheriting Tests

incomplete, marking as TODO, What just happened?

loading modules for, Loading Modules

order for running, What about...

organizing, Organizing Tests, What about?

tests (continued), Running Tests, What about..., What about..., Interpreting
Test Results, What about..., How do I do that?, What about..., Skipping
Tests, How do I do that?, What just happened?, What about..., What just
happened?, Collecting Test Results

results of, Interpreting Test Results, Collecting Test Results

collecting automatically, Collecting Test Results

interpreting, Interpreting Test Results

running, Running Tests, What about..., What about..., What about...,
What about..., What about..., What just happened?

arbitrary number of, What about...

individually, What about...

manually, What about...

on installation, What just happened?

on installation, user deciding, What about...

wrong number of, What about...

separate files for, What just happened?

skipping all tests, How do I do that?

skipping specific tests, Skipping Tests

writing, How do I do that?

test_diag() function, Test::Builder::Tester module, What about...

test_fail() function, Test::Builder::Tester module, What about...

TEST_FILES argument, make test program, Interpreting Test Results

test_test() function, Test::Builder::Tester module, What about...

TEST_VERBOSE argument, make test program, Interpreting Test Results

TEST_VERBOSE variable, What just happened?

throws_ok() function, Test::Exception module, What about...

tie() function, Test::Output::Tie module, Overriding Operators Everywhere

title_is() function, Test::WWW::Mechanize module, What just happened?

title_like() function, Test::WWW::Mechanize module, What just happened?

title_unlike() function, Test::WWW::Mechanize module, What just
happened?

TODO blocks, What just happened?, How do I do that?

typographical conventions used in this book, Conventions Used in This
Book

t_cmp() function, Apache::TestUtil module, What just happened?

t_debug() function, Apache::TestUtil module, What just happened?

U

unit testing, Unit Testing with Test::Class

unlike() function, Test::More module, What about...

UPLOAD() function, Apache::TestRequest module, What about...

user, deciding which tests to run on installation, What about...

use_ok() function, Test::More module, What just happened?, What about...

V

variables, What about..., Overriding Live Code

defined in modules, required for test, What about...

package variables, changing for tests, Overriding Live Code

version requirements for Perl, What This Book Covers

W

warnings, testing, Testing Warnings

warnings_are() function, Test::Warn module, What about...

warning_is() function, Test::Warn module, What about...

warning_like() function, Test::Warn module, What about...

web site resources, Comments and Questions, Through PPM, What about...,
Running Tests, Organizing Tests, How do I do that?, Bundling Tests with
Modules, What about..., What about...

CPAN, What about...

CPAN downloads, Organizing Tests

CPAN Testers, Bundling Tests with Modules

CPANTS (CPAN Testing Service), What about...

for this book, Comments and Questions

GnuPG, How do I do that?

PodMaster, list of ppm repositories, Through PPM

Test::Harness module, Running Tests

Test::MockDBI module, information about, What about...

web sites, testing, Testing Your Backend, What just happened?, Record and
Play Back Browsing Sessions, Testing the Validity of HTML

backend database features, Testing Your Backend

frontend features, What just happened?

HTML validity, Testing the Validity of HTML

recording and playing back browsing sessions, Record and Play Back
Browsing Sessions

write_message() function, testing, What about...

Y

y_n() method, Module::Build module, Letting the User Decide (Continued)

About the Authors
Ian Langworth (http://langworth.com/) has been writing Perlfor years and

actively involved in the community since 2003.He has contributed a

handful of modules to the CPAN, most ofwhich are Kwiki-related. He has

spoken at Perl-relatedconferences as LISA and YAPC. Ian is also the

authorsurprisingly widespread utility, Cadubi, which is packagedfor many

free operating systems.

Ian is currently studying Computer Science and CognitivePsychology at

Northeastern University. Whilst pursuinga degree, he's participating in an

volunteer systemsadministration group and working toward making higher

codequality and robustness an easier goal to achieve.

He currently resides in Boston, Massachusetts where heparticipates in the

local Boston Perl Mongers group and livesprecariously close to Fenway

Park.

chromatic is the technical editor of the O'Reilly Network, covering open

source, Linux, development, and dynamic languages. He is also the author

of the Extreme Programming Pocket Guide and Running Weblogs with

Slash, as well as the editor of BSD Hacks and Gaming Hacks. He is the

original author of Test::Builder, the foundation for most modern testing

modules in Perl 5, and has contributed many of the tests for core Perl. He

has given tutorials and presentations at several Perl conferences, including

OSCON, and often writes for Perl.com, which he also edits. He lives just

west of Portland, Oregon, with two cats, a creek in his backyard, and, as

you may have guessed, several unfinished projects.

http://langworth.com/

Colophon
About the Authors. Ian Langworth (http://langworth.com/) has been

writing Perl for years and actively involved in the community since 2003.

He has contributed a handful of modules to the CPAN, most of which are

Kwiki related. He has spoken at Perl-related conferences such as LISA and

YAPC.

Ian is also the author of the surprisingly widespread utility Cadubi, which is

packaged with many free operating systems. Ian is currently studying

computer science and cognitive psychology at Northeastern University.

While pursuing a degree, he’s participating in a volunteer systems

administration group and working toward making robust and high-qualuty

code an easier goal to achieve.

He currently resides in Boston, Massachusetts, where he participates in the

local Boston Perl Mongers group and lives precariously close to Fenway

Park.

chromatic is the technical editor of the O’Reilly Network, covering open

source, Linux, development, and Perl. He’s the author of the Extreme
Programming Pocket Guide and Running Weblogs with Slash, and the

editor of BSD Hacks and Gaming Hacks. chromatic is the original author of

Test::Builder, the foundation for most modern testing modules in Perl 5, and

has written a number of tests for core Perl. He’s given testing tutorials and

presentations at several Perl conferences, including OSCON, and written

several articles on testing for Perl.com. He lives just west of Portland,

Oregon, with two cats, a creek in his backyard, and, as you may have

guessed, several unfinished projects.

Our look is the result of reader comments, our own experimentation, and

feedback from distribution channels. Distinctive covers complement our

distinctive approach to technical topics, breathing personality and life into

potentially dry subjects.

The Developer’s Notebook series is modeled on the tradition of laboratory

notebooks. Laboratory notebooks are an invaluable tool for researchers and

their successors.

http://langworth.com/

The purpose of a laboratory notebook is to facilitate the recording of data

and conclusions as the work is being conducted, creating a faithful and

immediate history. The notebook begins with a title page that includes the

owner’s name and the subject of research. The pages of the notebook

should be numbered and prefaced with a table of contents. Entries must be

clear, easy to read, and accurately dated; they should use simple, direct

language to indicate the name of the experiment and the steps taken.

Calculations are written out carefully and relevant thoughts and ideas

recorded. Each experiment isintroduced and summarized as it is added to

the notebook. The goal is to produce comprehensive, clearly organized

notes that can be used as a reference. Careful documentation creates a

valuable record and provides a practical guide for future developers.

Adam Witwer was the production editor and Norma Emory was the

copyeditor for Perl Testing: A Developer’s Notebook. Ann Schirmer

proofread the text. Matt Hutchinson and Darren Kelly provided quality

control. Angela Howard wrote the index.

Edie Freedman designed the cover of this book. Karen Montgomery

produced the cover layout with InDesign CS using the Officina Sans and

JuniorHandwriting fonts.

David Futato designed the interior layout. This book was converted by

Keith Fahlgren to FrameMaker 5.5.6 with a format conversion tool created

by Erik Ray, Jason McIntosh, Neil Walls, and Mike Sierra that uses Perl and

XML technologies. The text font is Adobe Boton; the heading font is ITC

Officina Sans; the code font is LucasFont’s TheSans Mono Condensed; and

the handwriting font is a modified version of JuniorHandwriting made by

Tepid Monkey Foundry, and modified by O’Reilly. The illustrations that

appear in the book were produced by Robert Romano, Jessamyn Read, and

Lesley Borash using Macromedia FreeHand 9 and Adobe Photoshop 6. This

colophon was written by Colleen Gorman.

SPECIAL OFFER: Upgrade this ebook with
O’Reilly
Upgrade this ebook today for $4.99 at oreilly.com and get access to
additional DRM-free formats, including PDF and EPUB, along with free
lifetime updates.

http://opds.oreilly.com/buy/9781449386481.EBOOK?source=ibooks

	Perl Testing: A Developer’s Notebook
	SPECIAL OFFER: Upgrade this ebook with O’Reilly
	A Note Regarding Supplemental Files
	The Developer’s Notebook Series
	Notebooks Are...
	Notebooks Aren’t...
	Organization

	Preface
	What This Book Covers
	Conventions Used in This Book
	Using Code Examples
	Safari Enabled
	Comments and Questions
	Acknowledgments
	Ian Langworth
	chromatic

	1. Beginning Testing
	Installing Test Modules
	How do I do that?
	Through the CPAN shell
	Through PPM
	By hand

	What about...

	Running Tests
	How do I do that?
	What just happened?
	What about...

	Interpreting Test Results
	How do I do that?
	What just happened?
	What about...

	Writing Your First Test
	How do I do that?
	What just happened?
	What about...

	Loading Modules
	How do I do that?
	What just happened?
	What about...

	Improving Test Comparisons
	How do I do that?
	What just happened?
	What about...

	2. Writing Tests
	Skipping Tests
	How do I do that?
	What just happened?

	Skipping All Tests
	How do I do that?
	What just happened?

	Marking Tests as TODO
	How do I do that?
	What just happened?
	What about...

	Simple Data Structure Equality
	How do I do that?
	What just happened?
	What about...

	Data Composition
	How do I do that?
	What just happened?
	What about...
	Where to learn more

	Testing Warnings
	How do I do that?
	What just happened?
	What about...

	Testing Exceptions
	How do I do that?
	What just happened?
	What about...

	3. Managing Tests
	Organizing Tests
	How do I do that?
	What just happened?
	What about...

	Checking Your Coverage
	How do I do that?
	What just happened?
	What about...

	Writing a Testing Library
	How do I do that?
	What just happened?
	What about...

	Testing a Testing Library
	How do I do that?
	What just happened?
	What about...

	Writing a Testing Harness
	How do I do that?
	What just happened?

	Testing Across the Network
	How do I do that?
	What just happened?
	What about...

	Automating Test Runs
	How do I do that?
	What just happened?
	What about...

	4. Distributing Your Tests (and Code)
	Testing POD Files
	How do I do that?
	What just happened?
	What about...

	Testing Documentation Coverage
	How do I do that?
	What just happened?
	What about...

	Distribution Signatures
	How do I do that?
	What just happened?

	Testing Entire Distributions
	How do I do that?
	What just happened?
	What about...

	Letting the User Decide
	How do I do that?
	What just happened?

	Letting the User Decide (Continued)
	How do I do that?
	What just happened?

	Bundling Tests with Modules
	How do I do that?
	What just happened?
	What about?

	Collecting Test Results
	How do I do that?
	What just happened?
	What about...

	Validating Kwalitee
	How do I do that?
	What just happened?
	What about...

	5. Testing Untestable Code
	Overriding Built-ins
	How do I do that?
	What just happened?
	What about...

	Mocking Modules
	How do I do that?
	What just happened?
	What about...

	Mocking Objects
	How do I do that?
	What just happened?
	What about...

	Partially Mocking Objects
	How do I do that?
	What just happened?
	What about...

	Overriding Live Code
	How do I do that?
	What just happened?
	What about...

	Overriding Operators Everywhere
	How do I do that?
	What just happened?
	What about...

	6. Testing Databases
	Shipping Test Databases
	How do I do that?
	What just happened?
	What about...

	Testing Database Data
	How do I do that?
	What just happened?
	What about...

	Using Temporary Databases
	How do I do that?
	What just happened?
	What about...

	Mocking Databases
	How do I do that?
	What just happened?
	What about...

	7. Testing Web Sites
	Testing Your Backend
	How do I do that?
	What just happened?

	Testing Your Frontend
	How do I do that?
	What just happened?

	Record and Play Back Browsing Sessions
	How do I do that?
	What just happened?

	Testing the Validity of HTML
	How do I do that?
	What just happened?
	What about...

	Running Your Own Apache Server
	How do I do that?
	What just happened?

	Testing with Apache-Test
	How do I do that?
	What just happened?
	What about...
	Where to learn more

	Distributing Modules with Apache-Test
	How do I do that?
	What just happened?
	What about...

	8. Unit Testing with Test::Class
	Writing Test Cases
	How do I do that?
	What just happened?
	What about...

	Creating Test Fixtures
	How do I do that?
	What just happened?
	What about...

	Inheriting Tests
	How do I do that?
	What just happened?

	Skipping Tests with Test::Class
	How do I do that?
	What about...

	Marking Tests as TODO with Test::Class
	How do I do that?
	What about...

	9. Testing Everything Else
	Writing Testable Programs
	How do I do that?
	What just happened?
	What about...

	Testing Programs
	How do I do that?
	What just happened?
	What about...

	Testing Interactive Programs
	How do I do that?
	What just happened?
	What about...

	Testing Shared Libraries
	How do I do that?
	What just happened?
	What about...

	Index
	About the Authors
	Colophon
	SPECIAL OFFER: Upgrade this ebook with O’Reilly

