11*" International Mathematical Competition for University Students
Skopje, 25—-26 July 2004

Solutions for problems on Day 1

Problem 1. Let S be an infinite set of real numbers such that |s; + s2 + -+ + sg| < 1 for every finite subset
{s1,82,...,s,} C S. Show that S is countable. [20 points]

Solution. Let S, = SN (%, 00) for any integer n > 0. It follows from the inequality that |Sy| < n. Similarly, if we
define S_, = 5N (—o0, —2), then [S_,| < n. Any nonzero z € S is an element of some S,, or S_,, because there

exists an n such that z > %, orz < —%. Then S C {0}U U (S, US_,), S is a countable union of finite sets, and
nenN
hence countable.

Problem 2. Let P(x) = 22 — 1. How many distinct real solutions does the following equation have:

P(P(...(P(z))...)) =07  [20 points]
2004

Solution. Put P, (x) = P(P(...(P(x))...)). As Pi(z) > —1, for each x € R, it must be that P,;1(z) = Pi(P,(z)) >
——
n

—1, for each n € N and each x € R. Therefore the equation P,(x) = a, where a < —1 has no real solutions.
Let us prove that the equation P,(xz) = a, where a > 0, has exactly two distinct real solutions. To this end we
use mathematical induction by n. If n = 1 the assertion follows directly. Assuming that the assertion holds for a
n € N we prove that it must also hold for n + 1. Since P,y1(z) = a is equivalent to P;(P,(x)) = a, we conclude
that P,(z) = va+ 1 or P,(z) = —va + 1. The equation P,(z) = v/a + 1, as v/a + 1 > 1, has exactly two distinct
real solutions by the inductive hypothesis, while the equation P,(z) = —+v/a + 1 has no real solutions (because
—+va+1 < —1). Hence the equation P,11(x) = a, has exactly two distinct real solutions.

Let us prove now that the equation P,(z) = 0 has exactly n + 1 distinct real solutions. Again we use
mathematical induction. If n = 1 the solutions are = +1, and if n = 2 the solutions are z = 0 and =z = +/2,
so in both cases the number of solutions is equal to n + 1. Suppose that the assertion holds for some n € N.
Note that P,i2(z) = Po(Pu(7)) = P2(z)(P2(x) — 2), so the set of all real solutions of the equation P, 1o = 0 is
exactly the union of the sets of all real solutions of the equations P,(z) = 0, P,(z) = v/2 and P,(z) = —/2.
By the inductive hypothesis the equation P,(x) = 0 has exactly n + 1 distinct real solutions, while the equations
P, (x) = v/2 and P,(z) = —/2 have two and no distinct real solutions, respectively. Hence, the sets above being
pairwise disjoint, the equation P,42(z) = 0 has exactly n + 3 distinct real solutions. Thus we have proved that,
for each n € N, the equation P,(x) = 0 has exactly n + 1 distinct real solutions, so the answer to the question
posed in this problem is 2005.

n
Problem 3. Let S, be the set of all sums ) x, where n > 2, 0 < z1,72,...,2, < § and
k=1

n
Z sinxp =1.
k=1
a) Show that S, is an interval.  [10 points]
b) Let I,, be the length of S,,. Find lim [,. [10 points]
n—oo
Solution. (a) Equivalently, we consider the set
Y = {y = (ylay27 7yn)‘ 0<wyi,y2,-s¥n <1, 1 +y2+ ...+ yn = 1} C R"
and the image f(Y) of Y under
fly) = arcsiny; + arcsinys + ... + arcsin y,,.

Note that f(Y) = S,. Since Y is a connected subspace of R™ and f is a continuous function, the image f(Y) is
also connected, and we know that the only connected subspaces of R are intervals. Thus S,, is an interval.



(b) We prove that

1 T
n ar081n—§a?1+w2+...+:cn§§.
n

Since the graph of sinz is concave down for = € [0, 5], the chord joining the points (0,0) and (7, 1) lies below the
graph. Hence

2
T <sing for all x € [0, E]
T 2

and we can deduce the right-hand side of the claim:

—(x1+x2 + ... + ) <sinzxy +sinzy + ... +sinx, = 1.
T

The value 1 can be reached choosing 1 = § and 29 = --- = 2, = 0.

The left-hand side follows immediately from Jensen’s inequality, since sinz is concave down for = € [0, 5

5] and
T1+To+...+Tn s
0< o <3

1 sinz| +sinzo + ... +sinz, < r1+x9+ ...+,
= sin .

n_ n B n
Equality holds if 1 = --- = z,, = arcsin %

Now we have computed the minimum and maximum of interval S,,; we can conclude that S,, = [n arcsin %, Z1.
Thus [,, = Z — n arcsin l and
arcsin(l/n) 7

. T
S T A R

Problem 4. Suppose n > 4 and let M be a finite set of n points in R3, no four of which lie in a plane. Assume
that the points can be coloured black or white so that any sphere which intersects M in at least four points has
the property that exactly half of the points in the intersection of M and the sphere are white. Prove that all of
the points in M lie on one sphere. [20 points]

1, if X is white
1, if X is black
for any sphere S which passes through at least 4 points of M. For any 3 given points A, B, C in M, denote by
S (A, B, C) the set of all spheres which pass through A, B, C' and at least one other point of M and by |S (4, B, C)|
the number of these spheres. Also, denote by ) the sum )y, f (X).

We have
0= D IX)=(SABOI-D((A)+F(B)+F(C)+)] 1)

SeS(A,B,C) XeS

Solution. Define f: M — {-1,1}, f(X) = . The given condition becomes } g f (X) =0

since the values of A, B, C appear |S (A, B, C)| times each and the other values appear only once.

If there are 3 points A, B, C such that |S (A, B,C)| = 1, the proof is finished.

If |S(A, B,C)| > 1 for any distinct points A, B, C' in M, we will prove at first that ) = 0.

Assume that Y > 0. From (1) it follows that f(A) + f(B) + f(C) < 0 and summing by all (%) possible
choices of (A4, B,C) we obtain that (3) > < 0, which means > < 0 (contradicts the starting assumption). The
same reasoning is applied when assuming > < 0.

Now, from ) = 0 and (1), it follows that f(A) + f(B) + f(C) = 0 for any distinct points A, B, C' in M.
Taking another point D € M, the following equalities take place

FA)+[(B)+f(C)=0
f(A)+F(B)+f(D)=0
F(A)+1(C)+f(D)=0
FB)+[(C)+f(D)=0

which easily leads to f (A) = f(B) = f(C) = f (D) = 0, which contradicts the definition of f.

Problem 5. Let X be a set of (2k 4) + 1 real numbers, k > 2. Prove that there exists a monotone sequence
{z;}%_, C X such that
|Tiv1 — 21| = 2|z — 21

foralli=2, ..., k—1. [20 points]



Solution. We prove a more general statement:
Lemma. Let k,1 > 2, let X be a set of (kﬁ_4) +1 real numbers. Then either X contains an increasing sequence

2
{x;}¥_, € X of length k and
|xip1 —x1| > 2| — x| Vi=2,...,k—1,

or X contains a decreasing sequence {z;}!_; C X of length [ and
‘l’i.‘.l —1'1‘ Z 2‘1’1 —.%'1‘ Vi = 2,...,[— 1.

Proof of the lemma. We use induction on k + . In case k = 2 or [ = 2 the lemma is obviously true.
Now let us make the induction step. Let m be the minimal element of X, M be its maximal element. Let

M M
mt 1, XM:{xEX:x>m—; }.

Xp={reX:z<

k+l—4) _ (k+(l—1)—4) + ((k—1)+l—4

Since ( b e (h—1)—2 ), we can see that either

itz (gl ) oo b= (TR o

In the first case we apply the inductive assumption to X,, and either obtain a decreasing sequence of length [
with the required properties (in this case the inductive step is made), or obtain an increasing sequence {xi}f;f -
X, of length k£ — 1. Then we note that the sequence {x1,z2,...,25-1, M} C X has length k and all the required
properties.

In the case |Xp/| > (k+(l_1)_4) 4+ 1 the inductive step is made in a similar way. Thus the lemma is proved.

k—2
The reader may check that the number (kﬂ;l) + 1 cannot be smaller in the lemma.

Problem 6. For every complex number z ¢ {0, 1} define

f(z) =) (logz)~",

where the sum is over all branches of the complex logarithm.

a) Show that there are two polynomials P and @ such that f(z) = P(z)/Q(z) for all z € C\ {0,1}. [10
points]

b) Show that for all z € C\ {0,1}

224+4z+1

J(2) == 6(z —1)4

[10 points|

Solution 1. It is clear that the left hand side is well defined and independent of the order of summation, because
we have a sum of the type > n~%, and the branches of the logarithms do not matter because all branches are taken.
It is easy to check that the convergence is locally uniform on C\ {0, 1}; therefore, f is a holomorphic function on
the complex plane, except possibly for isolated singularities at 0 and 1. (We omit the detailed estimates here.)

The function log has its only (simple) zero at z = 1, so f has a quadruple pole at z = 1.

Now we investigate the behavior near infinity. We have Re(log(z)) = log|z|, hence (with ¢ := log |z|)

1> (logz)™*| < Y [logz|™* = (log|z| + 2min)~* + O(1)
= /OO (¢ + 2miz) "t dz 4+ O(1)

—00

= ¢* /00 (1 + 2miz/c)~dx 4+ O(1)

= c—3/ (1+2mit) ™ dt + O(1)

— 00

IN

a(log|z))~*

for a universal constant a.. Therefore, the infinite sum tends to 0 as |z| — co. In particular, the isolated singularity
at 0o is not essential, but rather has (at least a single) zero at oc.



The remaining singularity is at z = 0. It is readily verified that f(1/z) = f(z) (because log(1/z) = —log(z));
this implies that f has a zero at z = 0.

We conclude that the infinite sum is holomorphic on C with at most one pole and without an essential singularity
at 0o, so it is a rational function, i.e. we can write f(z) = P(z)/Q(z) for some polynomials P and @) which we
may as well assume coprime. This solves the first part.

Since f has a quadruple pole at z = 1 and no other poles, we have Q(z) = (z — 1)* up to a constant factor
which we can as well set equal to 1, and this determines P uniquely. Since f(z) — 0 as z — oo, the degree of P
is at most 3, and since P(0) = 0, it follows that P(z) = z(az? 4+ bz + ¢) for yet undetermined complex constants
a,b,c.

There are a number of ways to compute the coefficients a, b, ¢, which turn out to be a = ¢ = 1/6, b = 2/3.
Since f(z) = f(1/z), it follows easily that a = ¢. Moreover, the fact 21_)11%(2 —1D*f(2) =1 impliesa +b+c =1

(this fact follows from the observation that at z = 1, all summands cancel pairwise, except the principal branch
which contributes a quadruple pole). Finally, we can calculate

JEn=at on =t D st (Yo Y ) =

nodd n>1lodd n>1 n>leven

This implies a — b+ ¢ = —1/3. These three equations easily yield a, b, c.
Moreover, the function f satisfies f(z) + f(—z) = 16f(2?): this follows because the branches of log(z?) =
log((—z)?) are the numbers 2log(z) and 2log(—z). This observation supplies the two equations b = 4a and a = c,
which can be used instead of some of the considerations above.
Another way is to compute g(z) = >_ m first. In the same way, g(2)

_ _dz
T (-1

can be computed from lini(z —1)%2g(z) = 1; it is d = 1. Then the exponent 2 in the denominator can be increased
Z—

The unknown coefficient d

by taking derivatives (see Solution 2). Similarly, one can start with exponent 3 directly.
A more straightforward, though tedious way to find the constants is computing the first four terms of the
Laurent series of f around z = 1. For that branch of the logarithm which vanishes at 1, for all |w| < % we have

w?  w? wt

log(l+w) =w— -+ 5 77 O(jwl);
after some computation, one can obtain
1 —4 G
—_— = 2 — — O(1).
og(1 + w)? w20 gw T pwT (1)
The remaining branches of logarithm give a bounded function. So
7 1
fA4w) =w 4202+ Ew_Q + éw_l
(the remainder vanishes) and

B 142z — 1)+ Lz =12+ L(z—1)3 2P+ 424 1)
J2) = (z— 1)} T 6(z—1)

Solution 2. ;jFrom the well-known series for the cotangent function,

ol 1 { 1w
I e
anookz_:Nw+27rz’.k 29"

and .
2. lo2g z

N .
1 i itlogz 1 e 1 1 1
I - leglr_te TR .
Ninookz_:Nlonger.k 2T Tt T2t
Taking derivatives we obtain
3 R SR S S S
(logz)? 2 z2-1)  (z2—-1)%
Z 1 . E z ,7 Z(Z+1)
(logz)? 2 \(z—12)  2(z—1)3

1z (z2z+1) 222 +4z+1)
2 '<2<z—1>3> IECE

and

(logz)* 3




