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PROBLEMS AND SOLUTION

Problem 1. (20 points) Let V be a real vector space, and let f, f1, f2, . . . , fk be linear maps from V

to IR. Suppose that f(x) = 0 whenever f1(x) = f2(x) = . . . = fk(x) = 0. Prove that f is a linear
combination of f1, f2, ..., fk.

Solution. We use induction on k. By passing to a subset, we may assume that f1, . . . , fk are linearly
independent.

Since fk is independent of f1, . . . , fk−1, by induction there exists a vector ak ∈ V such that f1(ak) =
. . . = fk−1(ak) = 0 and fk(ak) 6= 0. After normalising, we may assume that fk(ak) = 1. The vectors
a1, . . . , ak−1 are defined similarly to get

fi(aj) =

{
1 if i = j

0 if i 6= j.

For an arbitrary x ∈ V and 1 ≤ i ≤ k, fi(x−f1(x)a1−f2(x)a2−· · ·−fk(x)ak) = fi(x)−
∑k

j=1 fj(x)fi(aj) =
fi(x) − fi(x)fi(ai) = 0, thus f(x − f1(x)a1 − · · · − fk(x)ak) = 0. By the linearity of f this implies
f(x) = f1(x)f(a1) + · · ·+ fk(x)f(ak), which gives f(x) as a linear combination of f1(x), . . . , fk(x).

Problem 2. (20 points) Let

P = {f : f(x) =
3∑

k=0

akxk, ak ∈ IR, |f(±1)| ≤ 1, |f(±
1

2
)| ≤ 1}.

Evaluate
sup
f∈P

max
−1≤x≤1

|f ′′(x)|

and find all polynomials f ∈ P for which the above “sup” is attained.

Solution. Denote x0 = 1, x1 = − 1
2 , x2 = 1

2 , x3 = 1,

w(x) =
3∏

i=0

(x− xi),

wk(x) =
w(x)

x− xk

, k = 0, . . . , 3,

lk(x) =
wk(x)

wk(xk)
.

Then for every f ∈ P

f ′′(x) =

3∑

k=0

l′′k(x)f(xk),

|f ′′(x)| ≤
3∑

k=0

|l′′k(x)|.
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Since f ′′ is a linear function max−1≤x≤1 |f ′′(x)| is attained either at x = −1 or at x = 1. Without loss
of generality let the maximum point is x = 1. Then

sup
f∈P

max
−1≤x≤1

|f ′′(x)| =

3∑

k=0

|l′′k(1)|.

In order to have equality for the extremal polynomial f∗ there must hold

f∗(xk) = signl′′k(1), k = 0, 1, 2, 3.

It is easy to see that {l′′k(1)}3
k=0 alternate in sign, so f∗(xk) = (−1)k−1, k = 0, . . . , 3. Hence f∗(x) =

T3(x) = 4x3 − 3x, the Chebyshev polynomial of the first kind, and f ′′∗ (1) = 24. The other extremal
polynomial, corresponding to x = −1, is −T3.

Problem 3. (20 points) Let 0 < c < 1 and

f(x) =







x
c

for x ∈ [0, c],

1−x
1−c

for x ∈ [c, 1].

We say that p is an n-periodic point if
f(f(. . . f
︸ ︷︷ ︸

n

(p))) = p

and n is the smallest number with this property. Prove that for every n ≥ 1 the set of n-periodic points
is non-empty and finite.

Solution. Let fn(x) = f(f(. . . f
︸ ︷︷ ︸

n

(x))). It is easy to see that fn(x) is a picewise monotone function and

its graph contains 2n linear segments; one endpoint is always on {(x, y) : 0 ≤ x ≤ 1, y = 0}, the other is
on {(x, y) : 0 ≤ x ≤ 1, y = 1}. Thus the graph of the identity function intersects each segment once, so
the number of points for which fn(x) = x is 2n.

Since for each n-periodic points we have fn(x) = x, the number of n-periodic points is finite.
A point x is n-periodic if fn(x) = x but fk(x) 6= x for k = 1, . . . , n−1. But as we saw before fk(x) = x

holds only at 2k points, so there are at most 21 + 22 + · · ·+ 2n−1 = 2n − 2 points x for which fk(x) = x

for at least one k ∈ {1, 2, . . . , n − 1}. Therefore at least two of the 2n points for which fn(x) = x are
n-periodic points.

Problem 4. (20 points) Let An = {1, 2, . . . , n}, where n ≥ 3. Let F be the family of all non-constant
functions f : An → An satisfying the following conditions:

(1) f(k) ≤ f(k + 1) for k = 1, 2, . . . , n− 1,

(2) f(k) = f(f(k + 1)) for k = 1, 2, . . . , n− 1.

Find the number of functions in F .

Solution. It is clear that id : An −→ An, given by id(x) = x, does not verify condition (2). Since id is
the only increasing injection on An, F does not contain injections. Let us take any f ∈ F and suppose
that #

(
f−1(k)

)
≥ 2. Since f is increasing, there exists i ∈ An such that f(i) = f(i + 1) = k. In view of

(2), f(k) = f (f(i + 1)) = f(i) = k. If {i < k : f(i) < k} = ∅, then taking j = max{i < k : f(i) < k} we
get f(j) < f(j + 1) = k = f (f(j + 1)), a contradiction. Hence f(i) = k for i ≤ k. If #

(
f−1({l})

)
≥ 2

for some l ≥ k, then the similar consideration shows that f(i) = l = k for i ≤ k. Hence #
(
f−1{i}

)
= 0

or 1 for every i > k. Therefore f(i) ≤ i for i > k. If f(l) = l, then taking j = max{i < l : f(i) < l}
we get f(j) < f(j + 1) = l = f (f(j + 1)), a contradiction. Thus, f(i) ≤ i − 1 for i > k. Let
m = max{i : f(i) = k}. Since f is non-constant m ≤ n − 1. Since k = f(m) = f (f(m + 1)),
f(m + 1) ∈ [k + 1, m]. If f(l) > l − 1 for some l > m + 1, then l − 1 and f(l) belong to f−1 (f(l)) and
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this contradicts the facts above. Hence f(i) = i− 1 for i > m + 1. Thus we show that every function f

in F is defined by natural numbers k, l, m, where 1 ≤ k < l = f(m + 1) ≤ m ≤ n− 1.

f(i) =







k if i ≤ m

l if i = m

i− 1 if i > m + 1.

Then

#(F) =

(
n

3

)

.

Problem 5. (20 points) Suppose that S is a family of spheres (i.e., surfaces of balls of positive radius)
in IRn, n ≥ 2, such that the intersection of any two contains at most one point. Prove that the set M of
those points that belong to at least two different spheres from S is countable.

Solution. For every x ∈ M choose spheres S, T ∈ S such that S 6= T and x ∈ S ∩ T ; denote by U, V, W

the three components of Rn \ (S ∪T ), where the notation is such that ∂U = S, ∂V = T and x is the only
point of U ∩ V , and choose points with rational coordinates u ∈ U , v ∈ V , and w ∈ W . We claim that
x is uniquely determined by the triple 〈u, v, w〉; since the set of such triples is countable, this will finish
the proof.

To prove the claim, suppose, that from some x′ ∈ M we arrived to the same 〈u, v, w〉 using spheres
S′, T ′ ∈ S and components U ′, V ′, W ′ of Rn \ (S′∪T ′). Since S∩S′ contains at most one point and since
U ∩ U ′ 6= ∅, we have that U ⊂ U ′ or U ′ ⊂ U ; similarly for V ’s and W ’s. Exchanging the role of x and
x′ and/or of U ’s and V ’s if necessary, there are only two cases to consider: (a) U ⊃ U ′ and V ⊃ V ′ and
(b) U ⊂ U ′, V ⊃ V ′ and W ⊂ W ′. In case (a) we recall that U ∩V contains only x and that x′ ∈ U ′∩V ′,
so x = x′. In case (b) we get from W ⊂ W ′ that U ′ ⊂ U ∪ V ; so since U ′ is open and connected, and
U ∩ V is just one point, we infer that U ′ = U and we are back in the already proved case (a).

Problem 6. (20 points) Let f : (0, 1) → [0,∞) be a function that is zero except at the distinct points
a1, a2, ... . Let bn = f(an).

(a) Prove that if

∞∑

n=1

bn < ∞, then f is differentiable at at least one point x ∈ (0, 1).

(b) Prove that for any sequence of non-negative real numbers (bn)∞n=1, with
∞∑

n=1
bn = ∞, there exists a

sequence (an)∞n=1 such that the function f defined as above is nowhere differentiable.

Solution

a) We first construct a sequence cn of positive numbers such that cn → ∞ and
∞∑

n=1
cnbn < 1

2 . Let

B =
∞∑

n=1
bn, and for each k = 0, 1, . . . denote by Nk the first positive integer for which

∞∑

n=Nk

bn ≤
B

4k
.

Now set cn = 2k

5B
for each n, Nk ≤ n < Nk+1. Then we have cn →∞ and

∞∑

n=1

cnbn =
∞∑

k=0

∑

Nk≤n<Nk+1

cnbn ≤
∞∑

k=0

2k

5B

∞∑

n=Nk

bn ≤
∞∑

k=0

2k

5B
·

B

4k
=

2

5
.

Consider the intervals In = (an − cnbn, an + cnbn). The sum of their lengths is 2
∑

cnbn < 1, thus
there exists a point x0 ∈ (0, 1) which is not contained in any In. We show that f is differentiable at x0,
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and f ′(x0) = 0. Since x0 is outside of the intervals In, x0 6= an for any n and f(x0) = 0. For arbitrary
x ∈ (0, 1) \ {x0}, if x = an for some n, then

∣
∣
∣
∣

f(x)− f(x0)

x− x0

∣
∣
∣
∣
=

f(an)− 0

|an − x0|
≤

bn

cnbn

=
1

cn

,

otherwise f(x)−f(x0)
x−x0

= 0. Since cn →∞, this implies that for arbitrary ε > 0 there are only finitely many
x ∈ (0, 1) \ {x0} for which

∣
∣
∣
∣

f(x)− f(x0)

x− x0

∣
∣
∣
∣
< ε

does not hold, and we are done.
Remark. The variation of f is finite, which implies that f is differentiable almost everywhere .
b) We remove the zero elements from sequence bn. Since f(x) = 0 except for a countable subset of

(0, 1), if f is differentiable at some point x0, then f(x0) and f ′(x0) must be 0.
It is easy to construct a sequence βn satisfying 0 < βn ≤ bn, bn → 0 and

∑∞

n=1 βn = ∞.
Choose the numbers a1, a2, . . . such that the intervals In = (an − βn, an + βn) (n = 1, 2, . . .) cover

each point of (0, 1) infinitely many times (it is possible since the sum of lengths is 2
∑

bn = ∞). Then
for arbitrary x0 ∈ (0, 1), f(x0) = 0 and ε > 0 there is an n for which βn < ε and x0 ∈ In which implies

|f(an)− f(x0)|

|an − x0|
>

bn

βn

≥ 1.
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