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Second day

PROBLEMS AND SOLUTION

Problem 1. (20 points) Let V' be a real vector space, and let f, f1, fa,..., fr be linear maps from V
to R. Suppose that f(z) = 0 whenever fi(z) = fa(z) = ... = fr(z) = 0. Prove that f is a linear
combination of fi, fa, ..., f.

Solution. We use induction on k. By passing to a subset, we may assume that fq,..., fi are linearly
independent.

Since f is independent of fi, ..., fx—1, by induction there exists a vector ay € V such that fi(ax) =
co. = fr—1(ar) = 0 and fr(ar) # 0. After normalising, we may assume that fr(ax) = 1. The vectors
ai,...,ap—1 are defined similarly to get

1 ifi=j

fi(aj){ 0 ifi+j.
For an arbitrary x € V and 1 <4 <k, fi(z— fi(z)a1— fo(x)az—- - -— fr(z)ar) = fi(z)*zz?ﬂ fi(x) fila;) =
filz) = fi(x)fi(a;) = 0, thus f(z — fi(x)ay — -+ — fr(x)ag) = 0. By the linearity of f this implies

f(x) = fi(@)f(a1) + -+ fx(z)f(ag), which gives f(x) as a linear combination of f1(z),..., fi(x).
Problem 2. (20 points) Let

3
P={f f@) = aat, ar € R, [f(ED)] < 1, [f(=D) <1},

2
k=0
Evaluate
2
sup _max /" ()]

and find all polynomials f € P for which the above “sup” is attained.

Solution. Denote g = 1,21 = *%,1'2 = %7563 =1,
3
w(z) = [[(@ - ),
i=0
wk(‘r) = zwfxazka k= 07 737
wp(x)
l =
k(@) we (28]

Then for every f € P

—_



Since f” is a linear function max_i<z<1 |f”(2)| is attained either at x = —1 or at x = 1. Without loss
of generality let the maximum point is z = 1. Then

fepP —1<z<1

3
sup max | f"(z)] = Y [1{(1)].
k=0

In order to have equality for the extremal polynomial f, there must hold

Folar) = signll/(1), k=0,1,2,3.
It is easy to see that {I}/(1)}3_, alternate in sign, so f.(zx) = (—1)*7%, k = 0,...,3. Hence f.(z) =
T3(x) = 423 — 3z, the Chebyshev polynomial of the first kind, and f”(1) = 24. The other extremal
polynomial, corresponding to x = —1, is —T5.
Problem 3. (20 points) Let 0 < ¢ < 1 and

z forz € [0, ¢,

=2 forx € e, 1].

and n is the smallest number with this property. Prove that for every n > 1 the set of n-periodic points
is non-empty and finite.

Solution. Let f,(x) = f(f(... f(x))). It is easy to see that f,(z) is a picewise monotone function and
——
n
its graph contains 2™ linear segments; one endpoint is always on {(z,y) : 0 <z <1, y = 0}, the other is
on {(x,y) : 0 <x <1,y = 1}. Thus the graph of the identity function intersects each segment once, so
the number of points for which f,(z) = z is 2™.

Since for each n-periodic points we have f,,(z) = x, the number of n-periodic points is finite.

A point z is n-periodic if f,,(z) = x but fr(x) # x for k=1,...,n—1. But as we saw before fr(z) =z
holds only at 2 points, so there are at most 2! + 22 + ... +2"~1 = 2" — 2 points x for which fi(z) =z
for at least one k € {1,2,...,n — 1}. Therefore at least two of the 2™ points for which f,(z) = = are
n-periodic points.

Problem 4. (20 points) Let A, = {1,2,...,n}, where n > 3. Let F be the family of all non-constant
functions f: A, — A, satisfying the following conditions:

(1) f(k)< f(k+1)fork=1,2,....,n—1,
2) f(k)=f(f(k+1) for k=1,2,...,n—1.

Find the number of functions in F.

Solution. It is clear that id : A,, — A, given by id(x) = z, does not verify condition (2). Since id is
the only increasing injection on A,, F does not contain injections. Let us take any f € F and suppose
that # (f~!(k)) > 2. Since f is increasing, there exists i € A, such that f(i) = f(i + 1) = k. In view of
(2), f(k)=f(fi+1)=f@i)=k. If{i <k: f(i) <k} =0, then taking j = max{i < k : f(i) < k} we
get f(j) < f(j+1)=k= f(f(j+1)), a contradiction. Hence f(i) =k for i < k. If # (f~*({I})) > 2
for some [ > k, then the similar consideration shows that f(i) =1 =k for i < k. Hence # (f~'{i}) =0
or 1 for every ¢ > k. Therefore f(i) < ¢ for ¢ > k. If f(I) =, then taking j = max{i < : f(i) <}
we get f(j) < fG+1) =1 = f(f(G+1)), a contradiction. Thus, f(i) < ¢ —1 for ¢ > k. Let
m = max{i : f(i) = k}. Since f is non-constant m < n — 1. Since k = f(m) = f(f(m+1)),
f(m+1)€k+1,m]. If f(I) >1—1 for some | > m+ 1, then [ — 1 and f(l) belong to f~* (f(I)) and



this contradicts the facts above. Hence f(i) =i — 1 for ¢ > m + 1. Thus we show that every function f
in F is defined by natural numbers k,I,m, where 1 <k <l= f(m+1)<m<n-—1.

k ifi<m
f@) =<1 ifi=m
i—1 ifi>m+1.

#<f>=(§)-

Problem 5. (20 points) Suppose that S is a family of spheres (i.e., surfaces of balls of positive radius)
in R™, n > 2, such that the intersection of any two contains at most one point. Prove that the set M of
those points that belong to at least two different spheres from S is countable.

Then

Solution. For every x € M choose spheres S,T € S such that S # T and x € SN T; denote by U, V, W
the three components of R™\ (SUT), where the notation is such that OU = S, 9V =T and « is the only
point of U NV, and choose points with rational coordinates u € U, v € V, and w € W. We claim that
2 is uniquely determined by the triple (u,v,w); since the set of such triples is countable, this will finish
the proof.

To prove the claim, suppose, that from some 2’ € M we arrived to the same (u,v,w) using spheres
S, T" € § and components U', V', W’ of R™\ (§’UT"). Since SN.S’ contains at most one point and since
UNU’ # (), we have that U C U’ or U’ C U; similarly for V’s and W’s. Exchanging the role of z and
a2’ and/or of U’s and Vs if necessary, there are only two cases to consider: (a) U D U’ and V D V' and
M) U CU', V>V and W C W'. In case (a) we recall that UNV contains only = and that 2’ € U’ NV’,
so x = a’. In case (b) we get from W C W' that U’ C U UV so since U’ is open and connected, and
U NV is just one point, we infer that U’ = U and we are back in the already proved case (a).

Problem 6. (20 points) Let f: (0,1) — [0,00) be a function that is zero except at the distinct points
ai, asz, ... . Let b, = f(an)

(a) Prove that if Z by, < 00, then f is differentiable at at least one point « € (0,1).

n=1

o0
(b) Prove that for any sequence of non-negative real numbers (b,)5 ;, with > b, = oo, there exists a
n=1
sequence (a,)S ; such that the function f defined as above is nowhere differentiable.

Solution .
a) We first construct a sequence ¢, of positive numbers such that ¢, — oo and Y cpb, < % Let
n=1
oo
B = > by, and for each k =0,1,... denote by Ny the first positive integer for which
n=1
oo
B
> s g
n:Nk

Now set ¢,, = g—; for each n, N <n < Ngy1. Then we have ¢, — oo and
PILTIES SIND DEIFOAED D) SUNE) SECTE -
CnOn = Cnbnp < — n < _ . — = —,
5B 5B 4k 5

n=1 k=0 Ny, S’IZ<N;C+1 k=0 n=Ny, k=0

Consider the intervals I,, = (an, — ¢pbp, an + cpby). The sum of their lengths is 2> ¢,b, < 1, thus
there exists a point z¢ € (0,1) which is not contained in any I,,. We show that f is differentiable at x,



and f’(x¢) = 0. Since xg is outside of the intervals I,,, g # a, for any n and f(xg) = 0. For arbitrary
x € (0,1)\ {zo}, if z = a,, for some n, then

f(@) = f(=o)

r — X9

_f(an)—0< by, 1

)

B |a’n71'0| N Cnbn B Cn

otherwise %ﬁ:gw") = 0. Since ¢,, — 00, this implies that for arbitrary € > 0 there are only finitely many
x € (0,1)\ {zo} for which
f(z) — f(=o)

r — X

<e€

does not hold, and we are done.

Remark. The variation of f is finite, which implies that f is differentiable almost everywhere .

b) We remove the zero elements from sequence b,. Since f(z) = 0 except for a countable subset of
(0,1), if f is differentiable at some point g, then f(zo) and f’(z¢) must be 0.

It is easy to construct a sequence (3, satisfying 0 < 3, < b,, b, — 0 and 22021 B = 00.

Choose the numbers ay,as, ... such that the intervals I,, = (an — Bn, an + Bn) (n = 1,2,...) cover
each point of (0, 1) infinitely many times (it is possible since the sum of lengths is 2 b, = 00). Then
for arbitrary xg € (0, 1), f(x¢) =0 and € > 0 there is an n for which §,, < € and z¢ € I, which implies

f(an) = f@o)| _ ba

|an 7I0| ﬂn o



