
OOADSS 3. Actors and Use Cases. Diagrams 1

Requirement analysis.

Use Case Diagrams.

Relationships

Definitions

Diagrams

Relationships

Examples

Case Study

Bibliography
Basic

 Roger S. Pressman. Software Engineering : A Practitioner's
Approach, 8th edition (2014), McGraw Hill, ISBN-10:
0078022126

 Ian Sommerville. Software Engineering, 10th edition (2015),
Addison-Wesley Pub Co; ISBN-10: 0133943038

Additional

 Software Engineering : Theory and Practice by S. Pfleeger and
J. Atlee, 4th edition (2009), Pearson International Edition,
ISBN-10: 0136061699

 SDLC (Software Development Life Cycle) Phases,
Methodologies, Process, And Models,
https://www.softwaretestinghelp.com/software-development-
life-cycle-sdlc/

2

3

Modeling principles

In software engineering work, two classes of

models can be created:
 Requirements models (also called analysis

models) represent the customer requirements by

depicting the software in three different domains:

the information domain, the functional domain,

and the behavioral domain.

 Design models represent characteristics of the

software that help practitioners to construct it

effectively: the architecture, the user interface,

and component-level detail.

What?

How?

4

Requirements modeling principles

 Principle #1. The information domain of a problem must

be represented and understood.

 Principle #2. The functions that the software performs

must be defined.

 Principle #3. The behavior of the software (as a

consequence of external events) must be represented.

 Principle #4. The models that depict information,

function, and behavior must be partitioned in a manner

that uncovers detail in a layered (or hierarchical) fashion.

 Principle #5. The analysis task should move from

essential information toward implementation detail.

What is a requirement?

 It may range from a high-level abstract
statement of a service or of a system constraint
to a detailed mathematical functional
specification.

 Requirements may serve a dual function:

 May be the basis for a bid for a contract –
therefore must be open to interpretation;

 May be the basis for the contract itself – therefore
must be defined in detail;

 Both these statements may be called requirements.

5

User- and system requirements
 User requirements

 Statements in natural language

plus diagrams of the services the

system provides and its

operational constraints. Written

for customers.

 System requirements

 A structured document setting

out detailed descriptions of the

system’s functions, services and

operational constraints. Defines

what should be implemented so

may be part of a contract

between client and contractor.

Written for dev-op’s.
6

Who are they important for?

Functional and non-functional req’s

 Functional requirements

 Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

 May state what the system should not do.

 Non-functional requirements

 Constraints on the services or functions offered by the system
such as timing constraints, constraints on the development
process, standards, etc.

 Often apply to the system as a whole rather than individual
features or services.

 Domain requirements (often seen as a subset of the
functional req’s)

 Constraints on the system from the domain of operation 7

8Source: https://vironit.com/functional-vs-non-functional-requirements/

describe

something that

a product or

service is

required to do

describe how

a system is

supposed to

function

Functional requirements

 Describe functionality or system services.

 Depend on the type of software, expected

users and the type of system where the

software is used.

 Functional user requirements may be high-

level statements of what the system should

do.

 Functional system requirements should

describe the system services in detail.
9

Requirements completeness and

consistency

 In principle, requirements should be both complete and

consistent.

 Complete

 They should include descriptions of all facilities

required.

 Consistent

 There should be no conflicts or contradictions in the

descriptions of the system facilities.

 In practice, it is very difficult to produce a complete and

consistent requirements document.

10

Non-functional requirements

 These define system properties and constraints
e.g. reliability, response time and storage
requirements. Constraints are I/O device
capability, system representations, etc.

 Process requirements may also be specified
mandating a particular IDE, programming
language or development method.

 Non-functional requirements may be more critical
than functional requirements. If these are not
met, the system may be useless.

11

Non-functional classifications

 Product requirements

 Requirements which specify that the delivered product must behave in

a particular way e.g. execution speed, reliability, etc.

 Organisational requirements

 Requirements which are a consequence of organisational policies and

procedures e.g. process standards used, implementation requirements,

etc.

 External requirements

 Requirements which arise from factors which are external to the system

and its development process e.g. interoperability requirements,

legislative requirements, etc.

12

Types of non-functional req’s

13

Metrics for specifying non-

functional req’s
Property Measure

Speed Processed transactions/second

User/event response time

Screen refresh time

Size Mbytes

Number of ROM chips

Ease of use Training time

Number of help frames

Reliability Mean time to failure

Probability of unavailability

Rate of failure occurrence

Availability

Robustness Time to restart after failure

Percentage of events causing failure

Probability of data corruption on failure

Portability Percentage of target dependent statements

Number of target systems
14

The software requirements

document

 The software requirements document is the

official statement of what is required of the

system developers.

 Should include both a definition of user

requirements and a specification of the system

requirements.

 It is NOT a design document. As far as possible,

it should set of WHAT the system should do

rather than HOW it should do it.

15

Users of a

requirements

document

16

Requirements’ document

structure 1/2

Chapter Description

Preface This should define the expected readership of the document and describe

its version history, including a rationale for the creation of a new version

and a summary of the changes made in each version.

Introduction This should describe the need for the system. It should briefly describe the

system’s functions and explain how it will work with other systems. It

should also describe how the system fits into the overall business or

strategic objectives of the organization commissioning the software.

Glossary This should define the technical terms used in the document. You should

not make assumptions about the experience or expertise of the reader.

User requirements

definition

Here, you describe the services provided for the user. The nonfunctional

system requirements should also be described in this section. This

description may use natural language, diagrams, or other notations that are

understandable to customers. Product and process standards that must be

followed should be specified.

System

architecture

This chapter should present a high-level overview of the anticipated system

architecture, showing the distribution of functions across system modules.

Architectural components that are reused should be highlighted.

17

Chapter Description

System

requirements

specification

This should describe the functional and nonfunctional requirements in more detail.

If necessary, further detail may also be added to the nonfunctional requirements.

Interfaces to other systems may be defined.

System models This might include graphical system models showing the relationships between

the system components and the system and its environment. Examples of

possible models are object models, data-flow models, or semantic data models.

System

evolution

This should describe the fundamental assumptions on which the system is based,

and any anticipated changes due to hardware evolution, changing user needs,

and so on. This section is useful for system designers as it may help them avoid

design decisions that would constrain likely future changes to the system.

Appendices These should provide detailed, specific information that is related to the

application being developed; for example, hardware and database descriptions.

Hardware requirements define the minimal and optimal configurations for the

system. Database requirements define the logical organization of the data used

by the system and the relationships between data.

Index Several indexes to the document may be included. As well as a normal alphabetic

index, there may be an index of diagrams, an index of functions, and so on.
18

Requirements’ document

structure 2/2

Requirements specification

 The process of writing of the user and system

requirements in a requirements document.

 User requirements have to be understandable by

end-users and customers who do not have a

technical background.

 System requirements are more detailed requirements

and may include more technical information.

 The requirements may be part of a contract for the

system development

 It is therefore important that these are as complete as

possible.
19

Ways of writing a system

requirements specification
Notation Description

Natural

language

The requirements are written using numbered sentences in natural language.

Each sentence should express one requirement.

Structured

natural

language

The requirements are written in natural language on a standard form or

template. Each field provides information about an aspect of the

requirement.

Design

description

languages

This approach uses a language like a programming language, but with more

abstract features to specify the requirements by defining an operational

model of the system. This approach is now rarely used although it can be

useful for interface specifications.

Graphical

notations

Graphical models, supplemented by text annotations, are used to define the

functional requirements for the system; UML use case and sequence

diagrams are commonly used.

Mathematical

specifications

These notations are based on mathematical concepts such as finite-state

machines or sets. Although these unambiguous specifications can reduce

the ambiguity in a requirements document, most customers don’t understand

a formal specification. They cannot check that it represents what they want

and are reluctant to accept it as a system contract
20

Scenarios

 Scenarios are real-life examples of how a system

can be used.

 They should include

 A description of the starting situation;

 A description of the normal flow of events;

 A description of what can go wrong;

 Information about other concurrent activities;

 A description of the state when the scenario finishes.

Use cases

 Use-cases are a scenario based technique in UML

(Unified Modelling Language), which identify the

actors in an interaction and which describe the

interaction itself.

 A set of use cases should describe all possible

interactions with the system.

 High-level graphical model supplemented by

Sequence diagrams (a more detailed tabular

description) may be used to add detail to use-cases

by showing the sequence of event processing in the

system.
22

UML use case diagrams

 UML use case diagrams

provide overview of usage

requirements for a system.

 For actual system or

software engineering use

case diagrams describe

actual system/software

requirements

 Useful also for simple

presentations to

management and/or project

stakeholders
OOADSS 3. Actors and Use Cases. Diagrams 23

History

 1986 - Ivar Jacobson formulated the

textual, structural and visual modeling

techniques for specifying use (originally

usage) cases

 1990 - use cases started becoming one

of the most common practices for

capturing functional requirements

 1992 - Jacobson's published the book

"Object-Oriented Software Engineering -

A Use Case Driven Approach"

 1995 - use case diagrams included into

Unified Modeling Language (UML) and

the Rational Unified Process (RUP)
OOADSS 3. Actors and Use Cases. Diagrams 24

Elements

 Actors - a person, organization, or external system that

plays a role in one or more interactions with your system

 Use cases - describe a sequence of actions that provide

something of measurable value to an actor

 Associations - exist whenever an actor is involved with an

interaction described by a use case

 Other relations – include, extend, generalize and depend

 System boundary boxes (optional) - rectangles around

the use cases to indicates the scope of your system

 Packages (optional) - UML constructs that enable you to

organize model elements (such as use cases) into groups.
OOADSS 3. Actors and Use Cases. Diagrams 25

Retrospection

An instance is a specific object created from a particular class.
OOADSS 3. Actors and Use Cases. Diagrams 26

OOADSS 3. Actors and Use Cases. Diagrams 27

Defining Actors

Actor

An actor instance is someone or something
outside the system that interacts with the
system.

An actor class defines a set of actor
instances, in which each actor instance plays
the same role in relation to the system.

To fully understand the system's purpose you must know who
the system is for, or who will use the system. Different user
types are represented as actors.

An actor is anything that exchanges data with the system. An
actor can be a user, external hardware, or another system

OOADSS 3. Actors and Use Cases. Diagrams 28

Differences between an Actor and

an Individual System User

OOADSS 3. Actors and Use Cases. Diagrams 29

Actors as Different Aspects of System's

Surroundings
 Users who execute the system's main

functions – for a Depot-Handling System:
Depot Staff and Order Registry Clerk.

 Users who execute the system's secondary
functions, such as system administration -
Depot Manager.

 External hardware the system uses - a
ventilation system that controls the
temperature in a building continuously gets
metered data from sensors in the building.
Sensor is therefore an actor.

 Other systems interacting with the system -
An ATM (Automated Teller Machine) must
communicate with the central system that
holds the bank accounts. The central system
is probably an external one, and should
therefore be an actor.

Source: https://www.cs.vassar.edu/~cs335/ATM/ATMExample.html

OOADSS 3. Actors and Use Cases. Diagrams 30

How to Find Actors

 Who will supply/use/remove information?
 Who will use this functionality?
 Who is interested in any requirement?
 Where in the organization is the system used?
 Who will support/maintain the system?
 What are the system’s external resources?
 What other systems will need to interact with this one?

OOADSS 3. Actors and Use Cases. Diagrams 31

Actors Help Define System Boundaries
Only those who directly communicate with the system need to be
considered as actors. Otherwise, you are attempting to model the business
in which the system will be used, not the system itself.

In an airline booking system (e.g., Amadeus), what would the actor be?

1. If the system is to be used by a travel agent, the actor would be travel
agent.

2. When users to connect via the Internet:

OOADSS 3. Actors and Use Cases. Diagrams 32

Documenting Actor Characteristics

Brief description:

What or who the actor represents?

Why the actor is needed?

What interests the actor has in the system?

Actor characteristics might influence how the system is

developed:
 The actor's scope of responsibility.
 The physical environment in which the actor will be using the

system.
 The number of users represented by this actor.
 Others.

OOADSS 3. Actors and Use Cases. Diagrams 33

Defining Use Cases

Use Case

A use case instance (scenario) is a
sequence of actions a system performs
that yields an observable result of value
for one or more particular actors or other
stakeholders of the system.

A use case (class) defines a set of use-
case instances.

OOADSS 3. Actors and Use Cases. Diagrams 34

Use Case Example

An ATM example - the system functionality is defined by
different use cases, each of which represents a specific
flow of events, defines what happens in the system when
the use case is performed, and has a task of its own to
perform.

OOADSS 3. Actors and Use Cases. Diagrams 35

How to Find Use Cases

 What are the system tasks for each actor you have identified?
 Does the actor need to be informed about certain occurrences in the

system?
 Will the actor need to inform the system about sudden, external changes?
 Does the system supply the business with the correct behavior?
 Can all features be performed by the use cases you have identified?
 What use cases will support and maintain the system?
 What information must be modified or created in the system?

Use cases types:
 System start and stop.
 Maintenance of the system (add user, …).
 Maintenance of data stored in the system.
 Functionality needed to modify behavior in the system.

OOADSS 3. Actors and Use Cases. Diagrams 36

Use Case Documenting –

Flow of Events

The Flow of Events of a use case contains the most important
information derived from use-case modeling work. Its contents:

 Describe how the use case starts and ends
 Describe what data is exchanged between the actor and the

use case
 Do not describe the details of the user interface, unless it is

necessary to understand the behavior of the system
 Describe the flow of events, not only the functionality. To

enforce this, start every action with "When the actor ... "
 Describe only the events that belong to the use case, and not

what happens in other use cases or outside of the system
 Avoid vague terminology such as "for example", "etc. " and

"information" - description stile
 Detail the flow of events - all "whats" should be answered.

OOADSS 3. Actors and Use Cases. Diagrams 37

Flow of Events - Structure

Basic (the straight arrow)

and alternative flows of

events (the curves).

A pre-condition is the state of the

system and its surroundings that is

required before the use case can be

started.

A post-condition - the states the

system can be in after the use case

has ended.

OOADSS 3. Actors and Use Cases. Diagrams 38

Source: https://docs.nomagic.com/display/MD184/The+Use+Case+scenario+created+with+the+version+17.0.1+or+earlier

OOADSS 3. Actors and Use Cases. Diagrams 39

How to describe a use case

scenario?

While a use case is an abstraction that describes all
possible scenarios, a scenario is an use case instance
with concrete set of actions. A three fields template
[Bruegge&Dutoit, 2004]:

 Name – unambiguous, underlined;

 Participating actors – underlined names;

 Flow of events – sequence of numbered interactions for
the use case; accomplished either by the actor (left
column) or by the system (right)

There are no Entry and Exit conditions – as they are
abstractions to describe a range of conditions under
which a use case is invoked.

OOADSS 3. Actors and Use Cases. Diagrams 40

How to describe a use case?

A six fields template [Bruegge&Dutoit, 2004]:

 Name – unambiguous, unique across the system;

 Participating actors;

 Entry conditions – need to be TRUE before use case
initiation;

 Flow of events:
 sequence of numbered interactions for the use case;

 accomplished either by the actor (left column) or by the
system (right)

 Exit conditions - need to be TRUE after use case
completion;

 Quality conditions – non-functional requirements…

OOADSS 3. Actors and Use Cases. Diagrams 41

Concrete and Abstract Use Cases

A concrete use case is initiated by an actor and constitutes a
complete flow of events (instance of the use case performs the
entire operation called for by the actor).

An abstract use case (written in italics) is never instantiated in
itself. Abstract use cases are included in, extended into, or
generalizing other use cases. When a concrete use case is
initiated, an instance of the use case is created. This instance also
exhibits the behavior specified by its associated abstract use
cases. Thus, no separate instances are created from abstract use
cases.

ID, Rank, Leaf and Root use cases

OOADSS 3. Actors and Use Cases. Diagrams 42

ID A unique value for identifying the use case.

Rank Describe the importance of the use case. The

higher the ranking implies that more attention is

needed.

Leaf Indicates whether it is possible to further

specialize an use case. If the value is true, then

it is not possible to further specialize the use

case.

Root Indicates whether the use case has no

ancestors (true for no ancestors).

Associations (relationships)

 Associations between actors and/or use cases are

indicated in use case diagrams by solid lines.

 An association exists whenever an actor is involved

with an interaction described by a use case.

 Associations are modeled as lines connecting use

cases and actors to one another

 The arrowhead is often used to indicate the direction

of the initial invocation of the relationship (but not the

direction of information exchange)

OOADSS 3. Actors and Use Cases. Diagrams 43

OOADSS 3. Actors and Use Cases. Diagrams 44

Associations

OOADSS 3. Actors and Use Cases. Diagrams 45

UML 2.0 New Terms

 Use Case Multiplicities lie

on the association between

actors and use cases.

 The definition of

multiplicities in the use

case diagram is exactly the

same as they are in a class

diagram – it shows the

number of instances

associated each other.

* What’s New in UML 2? The Use Case

Diagram–by Randy Miller, June 30,

2003

OOADSS 3. Actors and Use Cases. Diagrams 46

Include-Relationship

An include-relationship is a directed relationship from a base
use case to an inclusion use case, specifying how the behavior
defined for the inclusion use case is non-optionally, explicitly
inserted into the behavior defined for the base use case.

«include»

Executing a use-case instance following the description of a base use

case including its inclusion.

Including UC

Included UC

More about <<Include>>

 Including use case includes the
“addition” and owns the include
relationship.

 Addition is use case that is to be
included.

 The including use case may only
depend on the result (value) of the
included use case.

 This value is obtained as a result of
the execution of the included use
case.

OOADSS 3. Actors and Use Cases. Diagrams 47

OOADSS 3. Actors and Use Cases. Diagrams 48

Example of Includes

In the ATM system, the use cases Withdraw Cash, Deposit Cash, and
Transfer Funds all include the use case Identify Customer.

 The base use case has control of the relationship to the inclusion
and can depend on the result of performing the inclusion,

 but neither the base nor the inclusion use case may access each
other's attributes.

 The inclusion is in this sense encapsulated, and represents behavior
that can be reused in different base use cases.

OOADSS 3. Actors and Use Cases. Diagrams 49

Extend-Relationship

An extend-relationship goes from an extension use case to a
base use case, specifying how the behavior defined for the
extension use case can be inserted into the behavior of the base
use case. It is implicitly inserted in the sense that the extension
is not shown in the base use case.

«extend»

Execution of a use-case

instance follows a base use

case and its extension.

Extended UC

Extending UC

More about “Extend”

 This relationship specifies that the behavior of a use case may be
extended by the behavior of another (supplementary) use case.

 The extended use case is defined independently of the extending
use case and is meaningful independently of the extending use
case.

 On the other hand, the extending use case typically defines
behavior that may not necessarily be meaningful by itself.
Instead, the extending use case defines a set of modular
behavior increments that augment an execution of the extended
use case under specific conditions.

OOADSS 3. Actors and Use Cases. Diagrams 50

OOADSS 3. Actors and Use Cases. Diagrams 51

UML 2.0 New Terms
 Extension Points (UML 2.0) – they show the actual logic

necessary for one use case to extend another.

 An extension point identifies the point in the base use case

where the behavior of an extension use case can be inserted.

 The extension point is specified for a base use case and is

referenced by an extend relationship between the extension

use case extending the base use case (i.ee., the extended

use case).

OOADSS 3. Actors and Use Cases. Diagrams 52

Example of Extensions

In a phone system, the primary user service is represented by the

use case Place Call. Examples of optional services (extensions) are:

•To be able to add a third party to a call (Place Conference Call).

•To allow the receiving party to see the identity of the caller (Show

Caller Identity).

The extension is conditional - it is dependent on what has happened
while executing the base use case. The base use case does not
control the conditions for executing the extension – the conditions
are described within the extend-relationship.

Dependency

 A dependency is a relationship that signifies that a single

element or a set of model elements requires other model

elements for their specification or implementation

 Changes in “Block” will affect “Comment”

 The complete semantics of the depending element (the

client) is either semantically or structurally dependent

on the definition of the supplier element(s)

OOADSS 3. Actors and Use Cases. Diagrams 53

More about

dependency

OOADSS 3. Actors and Use Cases. Diagrams 54

Supplier The element(s) independent of the client element(s), in

the same respect and the same dependency relationship.

In some directed dependency relationships (such as

Refinement Abstractions), a common convention is to put

the more abstract element in this role. However, we can

make a more abstract element dependent on that which

is more specific.

Client The element(s) dependent on the supplier element(s). In

some cases (such as a Trace Abstraction) the

assignment of direction (that is, the designation of the

client element) is at the discretion of the modeler, and is a

stipulation.

OOADSS 3. Actors and Use Cases. Diagrams 55

Use-Case-Generalization

A use-case-generalization is a taxonomic relationship from a
child use case to a more general, parent use case, specifying
how a child can specialize all behavior and characteristics
described for the parent.

Use-Case-Generalization

Execution: the use-case instance follows the parent use case, with

behavior inserted or modified as described in the child use case.

General UC

Specific UC

More about Generalization

General References the general classifier in the Generalization

relationship.

Specific References the specializing classifier in the

Generalization relationship.

Substitu-

table

Indicates whether the specific classifier can be used

wherever the general classifier can be used. If true,

the execution traces of the specific classifier will be a

superset of the execution traces of the general

classifier.

OOADSS 3. Actors and Use Cases. Diagrams 56

OOADSS 3. Actors and Use Cases. Diagrams 57

Example of Use-Case-Generalization

The actor Order Registry Clerk can instantiate the general use case

Place Order. Place Order can also be specialized by the use cases

Phone Order or Internet Order.

The child may modify behavior segments inherited from the parent.
The structure of the parent use case is preserved by the child. Both
use-case-generalization and include can be used to reuse behavior
among use cases.

OOADSS 3. Actors and Use Cases. Diagrams 58

Use-Case Model of an Order Management System

Use-Case Model

The use-case model is a model that
describes a system's requirements in
terms of use cases.

concrete use cases

abstract use cases

Other example

OOADSS 3. Actors and Use Cases. Diagrams 59

Collaboration

 A collaboration describes a container of collaborating

elements, each performing a specialized function, which

collectively accomplish some desired functionality.

 Its primary purpose is to explain how a system works and,

therefore, it typically only incorporates those aspects of reality

that are deemed relevant to the explanation. Thus, details,

such as the identity or precise class of the actual participating

instances are suppressed.
Source: UML Superstructure Specification version 2.4.1, page 174

OOADSS 3. Actors and Use Cases. Diagrams 60

Collaboration example

OOADSS 3. Actors and Use Cases. Diagrams 61

Use case realization

 A realization is a relationship between a specification and its

implementation

 Realization is a specialized abstraction relationship between two

sets of model elements, one representing a specification (the

supplier) and the other represents its implementation (the client).

 Realization can be used to model stepwise refinement,

optimizations, transformations, templates, model synthesis,

framework composition, etc.

Source: UML Superstructure Specification version 2.4.1, page 131

OOADSS 3. Actors and Use Cases. Diagrams 62

System boundary boxes

 System boundary box

(optional) - a rectangle around

the use cases to indicates the

scope of your sub-system

 Anything within the box

represents functionality that is in

scope and anything outside the

box is not

 Rarely used – i.e., to identify

which use cases will be delivered

in each major release of a

system

OOADSS 3. Actors and Use Cases. Diagrams 63

System use case diagram example

OOADSS 3. Actors and Use Cases. Diagrams 64

Source: http://www.uml-diagrams.org/use-case-diagrams.html

Business use case diagrams

 While support for business modeling was declared as one of

the goals of the UML, UML specification provides no notation

specific to business needs.

 Business use cases were introduced in Rational Unified

Process (RUP) to represent business function, process, or

activity performed in the modeled business.

 A business actor represents a role played by some person

or system external to the modeled business, and interacting

with the business.

 A business use case should produce a result of observable

value to a business actor.

OOADSS 3. Actors and Use Cases. Diagrams 65

Source: http://www.uml-diagrams.org/use-case-diagrams.html

Business use case diagram example

OOADSS 3. Actors and Use Cases. Diagrams 66

Source: http://www.uml-diagrams.org/use-case-diagrams.html

OOADSS 3. Actors and Use Cases. Diagrams 67

Use-Case Packages

Use-Case
Package

A use-case package is a collection of use
cases, actors, relationships, diagrams, and
other packages; it is used to structure the
use-case model by dividing it into smaller
parts.

A graph showing the use-

case model hierarchy.

Arrows indicate possible

ownership.

OOADSS 3. Actors and Use Cases. Diagrams 68

Use cases and requirements

capturing – concepts [Bruegge&Duttoit, 2004]

 Req. capturing is focused on the purpose of the system

 Req. spec serves as a contract b/w clients and

developers

 Req. capture and analyses are concentrated on the

user’s view of the system

 Functional and non-functional req’s (usability, reliability,

adaptability, maintainability, performance, scalability…)

 Completeness, consistency, unambiguity and

correctness – definitions?

OOADSS 3. Actors and Use Cases. Diagrams 69

Use cases and requirements

capturing – concepts (2)

 Realism – the system req. lead to realization under
constraints

 Traceability – each system function can be traced back
to its corresponding set of req’s

 Verifiability and validability – after construction phase,
repeatable tests can be built for proving the system fulfils
the req. spec. Examples for non-verifiable req’s:
 Our product shall have a good GUI.

 The system should be error free.

 The response time will be less than 5 sec’s for most of the cases
providing there is assured high bandwidth.

 ….

OOADSS 3. Actors and Use Cases. Diagrams 70

Requirements capturing activities

 Identifying Actors

 Identifying Scenarios

 Identifying Use Cases

 Refining Use Cases

 Identifying Relationships among Actors and Use

Cases

 Identifying Initial Analyses Objects

 Identifying Non-functional Req’s

OOADSS 3. Actors and Use Cases. Diagrams 71

Identifying actors for FRIEND

[Bruegge&Dutoit, 2004]

FRIEND = First Responder Interactive Emergency Navigational Database

OOADSS 3. Actors and Use Cases. Diagrams 72

Identifying use cases in FRIEND

[Bruegge&Dutoit, 2004]

OOADSS 3. Actors and Use Cases. Diagrams 73

Refining use cases in FRIEND

- a bad and a good use case example
[Bruegge&Dutoit, 2004]

FRIEND = First Responder Interactive Emergency Navigational Database

OOADSS 3. Actors and Use Cases. Diagrams 74

Documenting Flow of Events in

Visual Paradigm

OOADSS 3. Actors and Use Cases. Diagrams 75

OOADSS 3. Actors and Use Cases. Diagrams 76

Example: The University Course Registration

(UCR) Case Study

Goal: to assign automatically students to the courses teach by
University professors.

Current process:

1) Batch report printed with all the courses teach by the professors

2) Students filled out course registration form (no course offering
for more than 20 students and less than five; four courses for
each student)

3) Registrar’s office processes the forms

4) Processing the conflicts – first choice usually is OK but in case
of conflicts Registrar’s officers talk to students to get additional
choices

5) After successful assignment to courses, hard copy of the
curriculum is sent to the students

6) Professors receive a student roster for each course they are
scheduled to teach

OOADSS 3. Actors and Use Cases. Diagrams 77

OOADSS 3. Actors and Use Cases. Diagrams 78

URC Use Cases

Main use case diagram

OOADSS 3. Actors and Use Cases. Diagrams 79

URC Use Cases - 2

An additional use case diagram

For Homework

Read the VP tutorials:

 How to Generate Use Case Scenario from Notes? -

https://www.visual-

paradigm.com/support/documents/vpuserguide/94/2

575/83684_produceuseca.html

 Documenting use case details - https://www.visual-

paradigm.com/support/documents/vpuserguide/94/2

575/21179_documentingu.html
OOADSS 3. Actors and Use Cases. Diagrams 80

https://www.visual-paradigm.com/support/documents/vpuserguide/94/2575/83684_produceuseca.html
https://www.visual-paradigm.com/support/documents/vpuserguide/94/2575/21179_documentingu.html

OOADSS 3. Actors and Use Cases. Diagrams 81

Q & A

