Requirement analysis.
Use Case Diagrams.
Relationships

Definitions
Diagrams
Relationships
Examples
Case Study

OOOOOO

Bibliography

Basic

e Roger S. Pressman. Software Engineering : A Practitioner's
Approach, 8™ edition (2014), McGraw Hill, ISBN-10:
0078022126

e lan Sommerville. Software Engineering, 10t edition (2015),
Addison-Wesley Pub Co; ISBN-10: 0133943038

Additional

e Software Engineering : Theory and Practice by S. Pfleeger and
J. Atlee, 4t edition (2009), Pearson International Edition,
ISBN-10: 0136061699

e SDLC (Software Development Life Cycle) Phases,
Methodologies, Process, And Models,
https://www.softwaretestinghelp.com/software-development-
life-cycle-sdic/

Modeling principles

: : O
In software engineering work, two classes of

models can be created: °

e Requirements nfodels (also called analysis
models) represent the customer requirements by
depicting the software in three different domains:
the information domain, the functional domain,
and the behavioral domain.

e Design models represent characteristics of the
software that help pragtitioners to construct it
effectively: the architecture, the user interface,

and component-level detall.

Requirements modeling principles

e Principle #1. The information domain of a problem must
be represented and understood.

e Principle #2. The functions that the software performs
must be defined.

e Principle #3. The behavior of the software (as a
consequence of external events) must be represented.

e Principle #4. The models that depict information,
function, and behavior must be partitioned in a manner
that uncovers detail in a layered (or hierarchical) fashion.

e Principle #5. The analysis task should move from
essential information toward implementation detalil

What Is a requirement?

e It may range from a high-level abstract
statement of a service or of a system constraint
to a detailed mathematical functional
specification.

e Requirements may serve a dual function:

May be the basis for a bid for a contract —
therefore must be open to interpretation;

May be the basis for the contract itself — therefore
must be defined in detall;

Both these statements may be called requirements.

5

User- and system regquirements

e User requirements
e Statements in natural language

plus diagrams of the services the
system provides and its

operational constraints. Written
for customers.

e System requirements

v

User

e A structured document setting

requirements
out detailed descriptions of the
system’s functions, services and
operational constraints. Defines | o

what should be implemented SO | reqremen

may be part of a contract
between client and contractor.
Written for dev-op’s.

Client managers
System end-users
Client engineers
Contractor managers
System architects

System end-users
Client engineers
System architects
Software developers

Functional and non-functional req’s

e Functional requirements

Statements of services the system should provide, how the
system should react to particular inputs and how the system
should behave in particular situations.

May state what the system should not do.

e Non-functional requirements

Constraints on the services or functions offered by the system
such as timing constraints, constraints on the development
process, standards, etc.

Often apply to the system as a whole rather than individual
features or services.

e Domain requirements (often seen as a subset of the
functional req’s)

Constraints on the system from the domain of operation 7

Eunctional Non Functional

describe
something that
a product or
service is
required to do

Interactions L

Confidentiality
Compllance

Domains o “

P
ol

Usability Traééébility
Privacy Flexibility
Security Extensibility

iy =i

"Transactions

y Ol

describe how Rellabillty Security

a system is o o
supposed to Scalability Versatility

function Rapidity interoperability

Source: https://vironit.com/functional-vs-non-functional-requirements/

Functional requirements

e Describe functionality or system services.

e Depend on the type of software, expected
users and the type of system where the
software Is used.

e Functional user requirements may be high-
level statements of what the system should
do.

e Functional system requirements should
describe the system services in detall.

Requirements completeness and
consistency

In principle, requirements should be both complete and
consistent.

Complete
They should include descriptions of all facilities
required.

Consistent

There should be no conflicts or contradictions in the
descriptions of the system facilities.

In practice, it is very difficult to produce a complete and
consistent requirements document.

10

Non-functional requirements

e These define system properties and constraints
e.g. reliablility, response time and storage
requirements. Constraints are 1/O device
capability, system representations, etc.

e Process requirements may also be specified
mandating a particular IDE, programming
language or development method.

e Non-functional requirements may be more critical
than functional requirements. If these are not
met, the system may be useless.

11

Non-functional classifications

e Product requirements
Requirements which specify that the delivered product must behave in
a particular way e.g. execution speed, reliability, etc.

e Organisational requirements

Requirements which are a consequence of organisational policies and
procedures e.g. process standards used, implementation requirements,
etc.

e External requirements

Requirements which arise from factors which are external to the system
and its development process e.g. interoperability requirements,
legislative requirements, etc.

12

Types of non-functional req’s

Nan-functional
Requirements

Product Organisational External
Requirements Requirements Requirements
Efficiency Reliability Partability Interoperability Ethical
Requirements Requirements Requirements Requirements Requirements
Usability Delivery Implementation Standards Legislative
Requirements Requirements Requirements Requirements Requirements
Performance Space Privacy Safety

Requirements Requirements Requirements Requirements

Hral. Loganathan H., Gk, HRBRLGE

13

Metrics for specifying non-
functional req’s

Speed

Size

Ease of use

Reliability

Robustness

Portability

Processed transactions/second
User/event response time
Screen refresh time

Mbytes
Number of ROM chips

Training time
Number of help frames

Mean time to failure
Probability of unavailability
Rate of failure occurrence
Availability

Time to restart after failure
Percentage of events causing failure
Probability of data corruption on failure

Percentage of target dependent statements

Number of target systems 14

The software reguirements
document

e The software requirements document is the
official statement of what is required of the
system developers.

e Should include both a definition of user

requirements and a specification of the system
requirements.

e It is NOT a design document. As far as possible,
It should set of WHAT the system should do
rather than HOW it should do it.

15

Users of a
requirements
document

Spedfy the requirements and
read them to check that they
meet their needs. Customers

speafy changes to the
requirements.

Use the requirements
document to plan a bid for
the system and to plan the

system development process.

Use the requirements to
understand what system is
to be developed.

Use the requirements to
develop validation tests for
the system.

System
Maintenance
Engineers

Use the requirements to
understand the system and
the relationships between
its parts,

Requirements’ document
structure 1/2

Preface

Introduction

Glossary

User requirements
definition

System
architecture

This should define the expected readership of the document and describe
its version history, including a rationale for the creation of a new version
and a summary of the changes made in each version.

This should describe the need for the system. It should briefly describe the
system’s functions and explain how it will work with other systems. It
should also describe how the system fits into the overall business or
strategic objectives of the organization commissioning the software.

This should define the technical terms used in the document. You should
not make assumptions about the experience or expertise of the reader.

Here, you describe the services provided for the user. The nonfunctional
system requirements should also be described in this section. This
description may use natural language, diagrams, or other notations that are
understandable to customers. Product and process standards that must be
followed should be specified.

This chapter should present a high-level overview of the anticipated system
architecture, showing the distribution of functions across system modules.
Architectural components that are reused should be highlighted.

17

Requirements’ document
structure 2/2

System
requirements
specification

System models

System
evolution

Appendices

Index

This should describe the functional and nonfunctional requirements in more detail.
If necessary, further detail may also be added to the nonfunctional requirements.
Interfaces to other systems may be defined.

This might include graphical system models showing the relationships between
the system components and the system and its environment. Examples of
possible models are object models, data-flow models, or semantic data models.

This should describe the fundamental assumptions on which the system is based,
and any anticipated changes due to hardware evolution, changing user needs,
and so on. This section is useful for system designers as it may help them avoid
design decisions that would constrain likely future changes to the system.

These should provide detailed, specific information that is related to the
application being developed; for example, hardware and database descriptions.
Hardware requirements define the minimal and optimal configurations for the
system. Database requirements define the logical organization of the data used
by the system and the relationships between data.

Several indexes to the document may be included. As well as a normal alphabetic
index, there may be an index of diagrams, an index of functions, and so on.

18

Reguirements specification

e The process of writing of the user and system
requirements in a requirements document.

e User requirements have to be understandable by
end-users and customers who do not have a
technical background.

e System requirements are more detailed requirements
and may include more technical information.

e The requirements may be part of a contract for the
system development

It is therefore important that these are as complete as
possible.

19

Ways of writing a system
requirements specification

Natural
language

Structured
natural
language

Design
description
languages

Graphical
notations

Mathematical
specifications

The requirements are written using numbered sentences in natural language.
Each sentence should express one requirement.

The requirements are written in natural language on a standard form or
template. Each field provides information about an aspect of the
requirement.

This approach uses a language like a programming language, but with more
abstract features to specify the requirements by defining an operational
model of the system. This approach is now rarely used although it can be
useful for interface specifications.

Graphical models, supplemented by text annotations, are used to define the
functional requirements for the system; UML use case and sequence
diagrams are commonly used.

These notations are based on mathematical concepts such as finite-state
machines or sets. Although these unambiguous specifications can reduce
the ambiguity in a requirements document, most customers don’t understand
a formal specification. They cannot check that it represents what they want
and are reluctant to accept it as a system contract

20

Scenarios

e Scenarios are real-life examples of how a system
can be used.

e They should include

Ad
Ad

Ad

escCr|
escCr|
escCr|

ntion of the starting situation;
otion of the normal flow of events;

ption of what can go wrong;

Information about other concurrent activities;
A description of the state when the scenario finishes.

Use cases

e Use-cases are a scenario based technique in UML
(Unified Modelling Language), which identify the
actors In an interaction and which describe the
Interaction itself.

e A set of use cases should describe all possible
Interactions with the system.

e High-level graphical model supplemented by
Seqguence diagrams (a more detailed tabular
description) may be used to add detall to use-cases
by showing the sequence of event processing in the
system.

22

UML use case diagrams

e UML use case diagrams
provide overview of usage
requirements for a system.

e For actual system or
software engineering use
case diagrams describe
actual system/software
requirements

e Useful also for simple
presentations to
management and/or project
stakeholders

OOADSS 3. Actors and Use Cases. Diagrams 23

History

e 1986 - Ivar Jacobson formulated the
textual, structural and visual modeling
technigues for specifying use (originally o .t

Gunnar Overgaard

usage) cases COMPUTER LANGUAGE Productivy Award Winer
e 1990 - use cases started becoming one Object-Oriented

of the most common practices for Sqftwarp

capturing functional requirements Engineering

253
AVAY Vi

e 1992 - Jacobson's published the book
"Object-Oriented Software Engineering -
A Use Case Driven Approach"

e 1995 - use case diagrams included into
Unified Modeling Language (UML) and
the Rational Unified Process (RUP)

OOADSS 3. Actors and Use Cases. Diagrams 24

0 WV ADDISONWESLEY

Elements

e Actors - a person, organization, or external system that
plays a role in one or more interactions with your system

e Use cases - describe a sequence of actions that provide
something of measurable value to an actor

e Associations - exist whenever an actor is involved with an
Interaction described by a use case

e Other relations — include, extend, generalize and depend

e System boundary boxes (optional) - rectangles around
the use cases to indicates the scope of your system

e Packages (optional) - UML constructs that enable you to
organize model elements (such as use cases) into groups.

OOADSS 3. Actors and Sse Cases. Diagrams

Retrospection

Class
Attributes
Behaviour
.
describes
|
instance of
instance of
instange of

An instance is a specific object created from a particular class.

OOADSS 3. Actors and Use Cases. Diagrams 26

Defining Actors

An actor /instance is someone or something
outside the system that interacts with the
system.

Actor An actor c/ass defines a set of actor
instances, in which each actor instance plays
the same role in relation to the system.

To fully understand the system's purpose you must know who
the system is for, or who will use the system. Different user
types are represented as actors.

An actor is anything that exchanges data with the system. An
actor can be a user, external hardware, or another system

OOADSS 3. Actors and Use Cases. Diagrams 27

Differences between an Actor and
an Individual System User

huraar
Lct=s as an Operator

Mark
Acts as an DOperatoar

rmodel=ed in

e 0 s ae Woades

T =

CDperator FPrant Daibhy HReport

Charlie as depot]
manager -
_ Depot Managenr
Zharlie Charlie as
depot stafrt -

Depot Stafr

OOADSS 3. Actors and Use Cases. Diagrams 28

. 00
Actors as Different Aspects of System's | sse
®

Surroundings

onsortium an +| Account [*_1-2| Customer
Users who execute the system's main Comsorm e T et s s
functions — for a Depot-Handling System:
Depot Staff and Order Registry Clerk. s

erplays

Users who execute the system's secondary | S concens
functions, such as system administration - L .| bas
Depot Manager. computer [—— oo cer | 1| ™ | conns
External hardware the system uses - a Sammunicates |communicates| | o
ventilation system that controls the " I
temperature in a building continuously gets « | ashier gasme;_
metered data from sensors in the building. communiedes B) i
Sensor is therefore an actor.)
Other systems interacting with the system -) sosessed
An ATM (Automated Teller Machine) must AT omtored & Remote |+ ___[Cash Car

communicate with the central system that dmpenses. | ispenses
holds the bank accounts. The central System [cen| [recom
IS prObany an eXternaI One’ and ShOU|d Source: https://www.cs.vassar.edu/~cs335/ATM/ATMExample.html
ﬂ?emfore be an actor 3. Actors and Use Cases. Diagrams 29

How to Find Actors

OOADSS

Drther Systems

M aint enanc e Communications

Who will supply/use/remove information?

Who will use this functionality?

Who is interested in any requirement?

Where in the organization is the system used?

Who will support/maintain the system?

What are the system’s external resources?

What other systems will need to interact with this one?

3. Actors and Use Cases. Diagrams 30

Actors Help Define System Boundaries

Only those who directly communicate with the system need to be
considered as actors. Otherwise, you are attempting to model the business
In which the system will be used, not the system itself.

In an airline booking system (e.g., Amadeus), what would the actor be?

1. If the system is to be used by a travel agent, the actor would be travel
agent.

Aidine Boo Kng Sy=stem

Airlimne BEBooking Sy=t=m

OOADSS 3. Actors and Use Cases. Diagrams 31

Documenting Actor Characteristics

Brief description:
4 What or who the actor represents?
Why the actor is needed?
\What interests the actor has in the system?

Actor characteristics might influence how the system is

developed:
The actor's scope of responsibility.

The physical environment in which the actor will be using the
system.

The number of users represented by this actor.
Others.

OOADSS 3. Actors and Use Cases. Diagrams 32

Defining Use Cases

Use Case

OOADSS

A use case /instance (scenario) is a
sequence of actions a system performs
that yields an observable result of value
for one or more particular actors or other
stakeholders of the system.

A use case (c/ass) defines a set of use-
case instances.

3. Actors and Use Cases. Diagrams 33

Use Case Example

D

Transter Momneys

|

D X

s thy drrawvwr M ormneyr Clie Check Balance

An ATM example - the system functionality is defined by
different use cases, each of which represents a specific
flow of events, defines what happens in the system when

the use case is performed, and has a task of its own to
perform.

OOADSS 3. Actors and Use Cases. Diagrams 34

How to Find Use Cases

® What are the system tasks for each actor you have identified?
Does the actor need to be informed about certain occurrences in the
system?

Will the actor need to inform the system about sudden, external changes?
Does the system supply the business with the correct behavior?

Can all features be performed by the use cases you have identified?
What use cases will support and maintain the system?

What information must be modified or created in the system?

Use cases types:

¢ System start and stop.

® Maintenance of the system (add user, ...).

® Maintenance of data stored in the system.

® Functionality needed to modify behavior in the system.

OOADSS 3. Actors and Use Cases. Diagrams 35

Use Case Documenting —
Flow of Events

The Flow of Events of a use case contains the most important
Information derived from use-case modeling work. Its contents:

® Describe how the use case starts and ends

® Describe what data is exchanged between the actor and the
use case

® Do not describe the details of the user interface, unless it is
necessary to understand the behavior of the system

® Describe the flow of events, not only the functionality. To
enforce this, start every action with "When the actor ... "

® Describe only the events that belong to the use case, and not
what happens in other use cases or outside of the system

® Avoid vague terminology such as "for example”, "etc. " and
"Information” - description stile

® Detall the flow of events - all "whats" should be answered.

OOADSS 3. Actors and Use Cases. Diagrams 36

Flow of Events - Structure

C

Basic (the straight arrow)
and alternative flows of
events (the curves).

Precondition @ A pre-condition is the state of the
system and its surroundings that is
required before the use case can be

started.

@ "
® A post-condition - the states the
/ ° system can be in after the use case

Postcondition = has ended.

OOADSS 3. Actors and Use Cases. Diagrams 37

P* Use Case - Register Return

specification of Use Case Scenario Obsolete
The Use Case Scenario Obsolete contains a list of specific Use Case Scenario Obsolete properties.

E % o]l g &= =

(]
v

]IMMJM
i

History @ <= Register Return -

-

<= Register Return Lze Case Scenario Obsolete
BB DocumentationHyperlinks [z | & IIEI | B BI%
== = z :
----- U=age in Diagrams 5 =
_____ Use Case Description Bl use Case Scenario Obsolete
:) 1. Identify Item
----- Ilse Case Scenario i
M== —ase Scenario Obsaleke Basic Flow of Events 2. Get Loan Details
151z -_-:I_'-|:= _ll_rI-:||'||_|) MR) | 3. '::Drlﬁrm REtLlrl-l

B8] Extension Points 4, Mark Item available for loaning

""" Behaviors Basic Flow of Events Diagrams @ Register Return [Reaisker Reburn]

----- Templake Parameters ;

. i 2. 1. Item is overdue

..... Inner Elements : Alternative Flow of Events 5 1.1 Penalize for Overdue

""" Relations Alternative Flow of Events Diagrams

..... Tags . . | Elow of B ts 3.1. Cancel

----- Constraints yeEphons How ol ven 3.1. 1. Close Item Dialog

""" Traceability Exceptional Flow of Events Diagrams

(Mame)
(Description)
..Close Back Forward | [[nep |

OOADSS 3. Actors and Use Cases. Diagrams 38

Source: https://docs.nomagic.com/display/MD184/The+Use+Case+scenario+created+with+the+version+17.0.1+or+earlier

How to describe a use case
scenario?

While a use case Is an abstraction that describes all
nOoSsible scenarios, a scenario IS an use case instance
with concrete set of actions. A three fields template
Bruegge&Dutoit, 2004]:

e Name — unambiguous, underlined;
e Participating actors — underlined names;

e Flow of events — sequence of numbered interactions for
the use case; accomplished either by the actor (left
column) or by the system (right)

There are no Entry and Exit conditions — as they are
abstractions to describe a range of conditions under
which a use case Is invoked.

OOADSS 3. Actors and Use Cases. Diagrams 39

How to describe a use case?

A six fields template [Bruegge&Dutoit, 2004]:

e Name — unambiguous, unique across the system;

e Participating actors;

e Entry conditions — need to be TRUE before use case
Initiation;

e Flow of events:

sequence of numbered interactions for the use case;
accomplished either by the actor (left column) or by the
system (right)
e EXxit conditions - need to be TRUE after use case
completion;

e Quality conditions — non-functional requirements...

OOADSS 3. Actors and Use Cases. Diagrams 40

Concrete and Abstract Use Cases

A concrete use case is initiated by an actor and constitutes a
complete flow of events (instance of the use case performs the
entire operation called for by the actor).

An abstract use case (written in /talics) is never instantiated in
itself. Abstract use cases are included in, extended into, or
generalizing other use cases. When a concrete use case is
initiated, an instance of the use case is created. This instance also
exhibits the behavior specified by its associated abstract use
cases. Thus, no separate instances are created from abstract use

cases. % <

Fe=gi=t=r Ord=r

Order Regi=tryr
e T

== incluudae>= =

OOADSS 3. Actors and Use Cases. Diagrams 41

e athe s

ID, Rank, Leaf and Root use cases

ID
Rank

Leaf

Root

OOADSS

A unigue value for identifying the use case.

Describe the importance of the use case. The

higher the ranking implies that more attention is
needed.

Indicates whether it is possible to further
specialize an use case. If the value Is true, then

It IS not possible to further specialize the use
case.

Indicates whether the use case has no
ancestors (true for no ancestors).

3. Actors and Use Cases. Diagrams 42

Associlations (relationships)

e Assoclations between actors and/or use cases are
Indicated in use case diagrams by solid lines.

e An association exists whenever an actor Is involved
with an interaction described by a use case.

e Associations are modeled as lines connecting use
cases and actors to one another

e The arrowhead iIs often used to indicate the direction
of the Initial invocation of the relationship (but not the
direction of information exchange)

OOADSS 3. Actors and Use Cases. Diagrams 43

Assoclations

C_D

Transfer Mon ey
M

o2 —C

Vs thdraw Money Clie Check Balance

OOADSS 3. Actors and Use Cases. Diagrams 44

UML 2.0 New Terms

e Use Case Multiplicities lie i
on the association between crestor
actors and use cases.

e The definition of

writes

multiplicities in the use Arcle Association Specification
case diagram is exactly the . ciiereaus: Al
same as they are in a class™ B (—
diagram — it shows the
number of instances
associated each other.
* What’s New in UML 2?7 The Use Case o .
Diagram-by Randy Miller, June 30, jw
2003

1.*
OOADSS 3. Actors and USe Cases. Diagrams 45

Include-Relationship

An include-relationship is a directed relationship from a base
use case to an inclusion use case, specifying how the behavior
defined for the inclusion use case is non-optionally, explicitly
inserted into the behavior defined for the base use case.

_______ «include»
Hse-Case Instance Base LUee Case
Including UC’@\@
Included UC/ T

Inciusion Use Case

Executing a use-case instance following the description of a base use
case including its inclusion.

OOADSS 3. Actors and Use Cases. Diagrams 46

More about <<Include>>

Including use case includes the
“addition” and owns the include
relationship. %

Addition is use case that is to be __.7Z..\...
included. Reader

The including use case may only

depend on the result (value) of the «

included use case. ,
This value is obtained as a result of odoraton of e arice

the execution of the included use
case. @
N\

OOADSS 3. Actors and Use Cases. Diagrams a7

00
:c
Example of Includes o
- Ider#h’y?sfamervh

1
i - —
= =include>=>= _ = = oAl de = = -
-
- 1 -

In the ATM system, the use cases Withdraw Cash, Deposit Cash, and
Transfer Funds all include the use case Identify Customer.

= =includ ===

—

® The base use case has control of the relationship to the inclusion
and can depend on the result of performing the inclusion,
® but neither the base nor the inclusion use case may access each

others attributes.
® The inclusion is in this sense encapsulated, and represents behavior

that can be reused in different base use cases.

OOADSS 3. Actors and Use Cases. Diagrams 48

°ceo
Extend-Relationship EE:'
An extend-relationship goes from an extension use caseto a

base use case, specifying how the behavior defined for th
extension use case can be inserted into the behavior of the base
use case. It is implicitly inserted in the sense that the extension
is not shown in the base use case.

«extend»

UHse T ase Instarnce
Base HUHse O ase

Execution of a use-case
Instance follows a base use
case and its extension.

Ex=tensiorn Frojd

Extended UC

E xtension Use Case

Extending UC

OOADSS 3. Actors and Use Cases. Diagrams 49

More about “Extend”

e This relationship specifies that the behavior of a use case may be
extended by the behavior of another (supplementary) use case.

e The extended use case is defined independently of the extending
use case and is meaningful independently of the extending use
case.

e On the other hand, the extending use case typically defines
behavior that may not necessarily be meaningful by itself.
Instead, the extending use case defines a set of modular
behavior increments that augment an execution of the extended
use case under specific conditions.

0..
Article esult

extension points
eature Request

-~
h-.
-
L.

OOADSS 50

UML 2.0 New Terms

Extension Points (UML 2.0) — they show the actual logic
necessary for one use case to extend another.

An extension point identifies the point in the base use case
where the behavior of an extension use case can be inserted.

The extension point is specified for a base use case and is
referenced by an extend relationship between the extension
use case extending the base use case (i.ee., the extended

use case).

D“t

Article esult

extension points
eature Request i,

-
h-.
-
L.

-
-
~ -

..
Request
. s

Administrated

OOADSS 3. Actors and Use Cases. Diagrams 51

| X N J
. 00
Example of Extensions oo
= e e
- aller f_{e}deni\}\\ ?‘3
<D -

= Tul R et = =P = T = Fecering Fartbws

In a phone system, the primary user service Is represented by the
use case Place Call. Examples of optional services (extensions) are:
*To be able to add a third party to a call (Place Conference Call).

*To allow the receiving party to see the identity of the caller (Show
Caller Identity).

The extension is conditional - it is dependent on what has happened
while executing the base use case. The base use case does not
control the conditions for executing the extension — the condiition

OOADSS 3. Actors and Use 7595. Diagrams 52

are described within the extend-relationship.

Dependency

e A dependency is a relationship that signifies that a single
element or a set of model elements requires other model
elements for their specification or implementation

e Changes in “Block” will affect “Comment”

e The complete semantics of the depending element (the
client) is either semantically or structurally dependent
on the definition of the supplier element(s)

Dependency

g @/

=<Hasic user== Administrator
Reader

OOADSS 3. Actors and Use Cases. Diagrams 53

More about 7 ese
@ T @) | |
dependency -

Supplier The element(s) independent of the client element(s), in
the same respect and the same dependency relationship.
In some directed dependency relationships (such as
Refinement Abstractions), a common convention Is to put
the more abstract element in this role. However, we can
make a more abstract element dependent on that which
IS more specific.

Client The element(s) dependent on the supplier element(s). In
some cases (such as a Trace Abstraction) the
assignment of direction (that is, the designation of the
client element) is at the discretion of the modeler, and is a
stipulation.

OOADSS 3. Actors and Use Cases. Diagrams 54

Use-Case-Generalization

e XY XYY X)

P oe
Q)

A use-case-generalization is a taxonomic relationship f
child use case to a more general, parent use case, specifying
how a child can specialize all behavior and characteristics

q

described for the parent

[

FParent Use C ase

General UC i

e ———

] T e e e

HHse-Case Instanoce T

e Specific UC

Childd Use Case

Execution: the use-case instance follows the parent use case, with
behavior inserted or modified as described in the child use case.

OOADSS 3. Actors and Use Cases. Diagrams

More about Generalization

General References the general classifier in the Generalization
relationship.

Specific References the specializing classifier in the
Generalization relationship.

Substitu- Indicates whether the specific classifier can be used

table wherever the general classifier can be used. If true,
the execution traces of the specific classifier will be a
superset of the execution traces of the general
classifier.

OOADSS 3. Actors and Use Cases. Diagrams 56

Example of Use-Case-Generalization

rder Heggtr!,r F"I-El-l::el:l rd er

Fhonmne COrd =r

-

o= torm =r

Imtemaet Orde=r

Int=rn=et S o= tomar

The actor Order Registry Clerk can instantiate the general use case
Place Order. Place Order can also be specialized by the use cases
Phone Order or Internet Order.

The child may modify behavior segments inherited from the parent.
The structure of the parent use case is preserved by the child. Both

use-case-generalization and include can be used to reuse behavior
ai)ffﬁsﬁg use Cases. 3. Actors and Use Cases. Diagrams e

o
®
Use-Case Model of an Order Management System E
@

B—— - i

= The L!SE case mOerI is g model t_wat
describes a system's requirementslin
Use-Case Model terms of use cases.

=

== torm er Imternaet o= bomer

‘ ‘ concrete use cases

Fhome Cirder Int=rme=t COirde=er

= = ety == e s asd et ooy

F = = T = E-E.“i ad e ==

—_

—

abstract use cases N “3‘“@

Sermd e T mdtheoaT = st
OOADSS 3. Actors and Use Cases. Diagrams 58

Other example

uc [Package] Use Cases [Complete])

. extension point: Fault
Surveillance System 5

Condition: {camera fault detected) B’

-

s

Supervisor

>

Advanced Operator

1\

Handle Camera Fault > _.-~

-
-

Py
-

«extend» | _--

|
W

/'I!\I);tor Environment

extension points
Fault

- -
«mdude», -~

Initialize System

Manually Momto:_h
Environment

-~ °
e \«mdude»

Shutdown System

Automatically Monito
Environment

Csetp Tack >

B

Intruder

Operator

OOADSS

3. Actors and Use Cases. Diagrams

59

Collaboration

e A collaboration describes a container of collaborating
elements, each performing a specialized function, which
collectively accomplish some desired functionality.

e Its primary purpose is to explain how a system works and,
therefore, it typically only incorporates those aspects of reality
that are deemed relevant to the explanation. Thus, detalils,
such as the identity or precise class of the actual participating

Instances are suppressed.
Source: UML Superstructure Specification version 2.4.1, page 174

.-'#F_._—“HH'
p Collaboration "“\

)

~ 7
L -
S -F#

- o
— e o

UML collaboration

OOADSS 3. Actors and Use Cases. Diagrams 60

Collaboration example

<<user>>
Writer

~
/

write

extension points
ollect Feedback

OOADSS 3. Actors and Use Cases. Diagrams 61

Use case realization

e A realization is a relationship between a specification and its
Implementation

e Realization is a specialized abstraction relationship between two
sets of model elements, one representing a specification (the
supplier) and the other represents its implementation (the client).

e Realization can be used to model stepwise refinement,
optimizations, transformations, templates, model synthesis,
framework composition, etc.

Source: UML Superstructure Specification version 2.4.1, page 131

.

OOADSS 3. Actors and Use Cases. Diagrams 62

System boundary boxes

System boundary box
(optional) - a rectangle around
the use cases to indicates the
scope of your sub-system

Anything within the box i
represents functionality that is In

scope and anything outside the
box Is not

Rarely used — I.e., to identify

Customer

Search For
ltems

Place Order

Vi

”{Sin}}

which use cases will be delivered
In each major release of a
system Time

OOADSS 3. Actors and Use Cases. Diagrams

Payment Processor
Release 1
Rele2se 2 Customer Support
Released Tax Authority

63

System use case diagram example

multiplicity

o subject, system boundary

association

\ - 1.0 &

-4

Customer

include —
relationship

use case™

© uml-diagrams.org

Source: http://www.uml-diagrams.org/use-case-diagrams.htmi

OOADSS

]

1';‘;:,.
«Subsystem»
Checkout @
extend relationship
wextend» ¢ - P
A B
Checkout »-:f_,____h‘_
actor
. | /
ginclude» Clerk V"
u Payment 3
yment }o————— 1§ #
g 'ﬁ:r ____H--“'F_F ——
- multiplicity Payment Service

Administrator

3. Actors and Use Cases. Diagrams

64

Business use case diagrams

e While support for business modeling was declared as one of
the goals of the UML, UML specification provides no notation
specific to business needs.

e Business use cases were introduced in Rational Unified
Process (RUP) to represent business function, process, or
activity performed in the modeled business.

e A business actor represents a role played by some person
or system external to the modeled business, and interacting
with the business.

e A business use case should produce a result of observable
value to a business actor.

Source: http://www.uml-diagrams.org/use-case-diagrams.htmi

OOADSS 3. Actors and Use Cases. Diagrams 65

Source: http://www.uml-diagrams.org/use-case-diagrams.htmi

Business use case diagram example

husiness actor

\L% N

association

subject,
{’_ business boundary

«Business»

Airport business use case

Group

Tour Guide

generalization
between actors

business actor

Passenger K

OOADSS
©@ uml-diagrams.org

-

/

multiplicity

Check-In

include
| __— relationship
«include» :-’;'-""

extend
L — relationship

. .
wextends ™.

66

Use-Case Packages

A use-case package is a collection of use
_ cases, actors, relationships, diagrams, and
Use-Case other packages; it is used to structure the
Package use-case model by dividing it into smaller
parts.
|

Top-Lewvel Package

1

A graph showing the use-

o

o case mod_el hierarchy.
Ll :;H Arrows Indicate possible
Use- Case Packages OwnerShip.

== ==
Aactors Us e Cas es

OOADSS 3. Actors and Use Cases. Diagrams 67

Use cases and requirements
capturing — concepts [srueggesduttoit, 2004]

Req. capturing is focused on the purpose of the system

Req. spec serves as a contract b/w clients and
developers

Req. capture and analyses are concentrated on the
user’'s view of the system

Functional and non-functional req’s (usability, reliability,
adaptability, maintainability, performance, scalability...)

Completeness, consistency, unambiguity and
correctness — definitions?

OOADSS 3. Actors and Use Cases. Diagrams 68

Use cases and requirements
capturing — concepts (2)

e Realism —the system req. lead to realization under
constraints

e Traceabllity — each system function can be traced back
to its corresponding set of req’s

e Verifiability and validability — after construction phase,

repeatable tests can be built for proving the system fulfils
the req. spec. Examples for non-verifiable req’s:

Our product shall have a gaoe-GUI.
The system should be error free.
The response time will be less than 5 sec’s for mostof the cases

providing there is assured high bandwielth.

OOADSS 3. Actors and Use Cases. Diagrams 69

Requirements capturing activities

e |ldentifying Actors

e |ldentifying Scenarios
e |ldentifying Use Cases
e Refining Use Cases

e |ldentifying Relationships among Actors and Use
Cases

e ldentifying Initial Analyses Objects
e Identifying Non-functional Req’s

OOADSS 3. Actors and Use Cases. Diagrams 70

ldentifying actors for FRIEND

[Bruegge&Dutoit, 2004]

9— %
A FRIEND

FieldOfficer Dispatcher

Figure 4-5 Actors of the FRIEND system. Fie1dOfficers not only have access to different functionality,
they use different computers to access the system.

FRIEND = First Responder Interactive Emergency Navigational Database

OOADSS 3. Actors and Use Cases. Diagrams 71

ldentifying use cases in FRIEND

[Bruegge&Dutoit, 2004]

FRIEND

Rer:gme)wcy _Q_
£ = X

openIncident Dispatcher

e

AllocateResources

Fieldofficer

Figure 2-13 An example of a UML use case diagram for First Responder Interactive Emergency
Navigational Database (FRIEND), an accident management system. Associations between actors and use
cases denote information flows. These associations are bidirectional: they can represent the actor initiating
a use case (FieldOfficer initiates ReportEmergency) or a use case providing information 1o an actor
(ReportEmergency notifies Dispatcher). The box around the use cases represents the system boundary.

OOADSS 3. Actors and Use Cases. Diagrams 72

Refining use cases in FRIEND
- a bad and a good use case example

[Bruegge&Dutoit, 2004]

Use case name Accident

Bad name: What the user is trying
to accomplish?

Initiating actor

Initiated by FieldOfficer

Flow of events 1.

2

The FieldOfficer reports the accident.

. An ambulance is dispatched.

. The Dispatcher is notified when the

ambulance arrives on site.

Causality: Which action caused the
FieldOfficer to recetve an
acknowledgment?

Passive voice: Who disparches the
ambulance?

Incomplere transaction: What does
the FieldOfficer do after the
ambulance is disparched?

Figure 4-9 An example of a poor use case. Violations of the writing guide are indicated in i7alics in the

right column.

FRIEND = First Responder Interactive Emergency Navigational Database

OOADSS

3. Actors and Use Cases. Diagrams

73

Use case name

ReportEmergency

Participaring
actors

Initiated by FieldOfficer
Communicates with Dispatcher

Flow of evenits

4

2 S

The Fiel1dOfficer activates the “Report Emergency’ function of her terminal.

2. FRIEND responds by presenting a form to the FieldOfficer.

The FieldOfficer fills out the form by selecting the emergency level, type,
location. and brief description of the situation. The FieldOfficer also
describes possible responses to the emergency situation. Once the form is
completed, the FieldOfficer submits the form.

4. FRIEND receives the form and notifies the Dispatcher.

The Dispatcher reviews the submitted information and creates an Incident in
the database by invoking the OpenInci dent use case. The Dispatcher selects a
response and acknowledges the report.

6. FRIEND displays the acknowledgment and the selected
response to the FieldOfficer.

Entry condition

The FieldOfficer is logged into FRIEND.

Exir condition

The FieldOfficer has received an acknowledgment and the selected response
from the Dispatcher, OR

The FieldOfficer has received an explanation indicating why the transaction
could not be processed.

Qualiry

requirements

The FieldOfficer's report is acknowledged within 30 seconds.
The selected response arrives no later than 30 seconds after it is sent by the
Dispatcher.

Figure 2-14 An example of a use case, ReportEmergency.

OOADSS

3. Actors and Use Cases. Diagrams 74

Documenting Flow of Events In

Visual Paradigm

Info | Flow of Events | Details | Reguirements I Diagrams I Test Plan I References I Des::ripﬁun|

[l
(il

:Fluw of Events y

+I@ FEAVEE Iw0o€E

:{Hide testing procedures) -

1. Fill in pheysical examination Form
1.1. Download the phwsical examination Form on the student visa website
1.2. Double check filled information
1.3. Make a cheque For medical Fee

Call a physician to reserve an appoinkment

LS R L |

Arrive at the dinic at at the scheduled time

4, Fallow the instruction af physician and #-ray physician
4, 1. Perform general physical examination

4.2, Perform detailled phywsical examination

4.3, Perform urine test

4.4, Perform ¥-ray check]

Extension:

3.2, For those who are late for physical examination
1. Reschedule appointment with the phwvsician
2. Make an appaintment with another physician

OOADSS 3. Actors and Use Cases. Diagrams

75

Example: The University Course Registration
(UCR) Case Study

Goal: to assign automatically students to the courses teach by
University professors.

Current process:
1) Batch report printed with all the courses teach by the professors

2) Students filled out course registration form (no course offering
for more than 20 students and less than five; four courses for
each student)

3) Registrar’s office processes the forms

4y Processing the conflicts — first choice usually is OK but in case
of conflicts Registrar’s officers talk to students to get additional
choices

5) After successful assignment to courses, hard copy of the
curriculum is sent to the students

6) Professors receive a student roster for each course they are
scheduled to teach

OOADSS 3. Actors and Use Cases. Diagrams 76

‘ ®
@
®
Input student @
marks
@
Grade Admistrator | ()
Print Teaching
Schedule

Yeach Seminar

institution Instructor

' <<extend>> Distribut
: Tm‘"m Information to
- i Studems

—<—gxtend> Post Office
Student | Distribute Fee
Schedule
=<extend>>
Distribute
I =
Drop seminar

Registrar

Graduate From
@ Apply for Gramt
77

Researcher

Drop out of
School
Attend seminar

URC Use Cases

EElUse Case Diagrams: UU=se Case YWiew 7 kdain

D
Etuden’x Select codurses to teach

: Frofessoar
/ Fegister for colurses

Fedgquaest course roster

Billing Swvstem @ @

Maintain profess=ar intfarmation

5\ Maintain student inforrmation
D —

hairntain codrse information

Registrar Create course catalogue

[« 1 | =

Main use case diagram

OOADSS 3. Actors and Use Cases. Diagrams 78

URC Use Cases - 2

I_zfs_l UHse Case Diagram: Uze Casze YWiew 5 Profeszor Wse Casex

X
S_— _—

Select courses tao teach Fegquest course raster

f{USESN [’:%::Uses:::n

“Walidatae Llsear

An additional use case diagram

OOADSS 3. Actors and Use Cases. Diagrams 79

For Homework

Read the VP tutorials:

e How to Generate Use Case Scenario from Notes? -
https://www.visual-
paradigm.com/support/documents/vpuserguide/94/2
575/83684 produceuseca.html

e Documenting use case detalls - hitps://www.visual-
paradigm.com/support/documents/vpuserguide/94/2
575/21179 documentingu.htm|

OOADSS 3. Actors and Use Cases. Diagrams 80

https://www.visual-paradigm.com/support/documents/vpuserguide/94/2575/83684_produceuseca.html
https://www.visual-paradigm.com/support/documents/vpuserguide/94/2575/21179_documentingu.html

Q&A

OOADSS

3. Actors and Use Cases. Diagrams

81

