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Задача 1. (30т.) Нека M = {A,A#, B, C,C#, D,D#, E, F, F#, G,G#} е множеството от нотите (|M | =
12). На пианото черните клавиши представляват нотите, в които има # (те са 5 на брой), а белите
клавиши представляват всички останали ноти. Когато суеверният пианист свири мелодия, той винаги
гледа да натиска черните клавиши нечетен брой пъти.
Нека S(n) ⊆ Mn е множеството от мелодии, които би изсвирил суеверния пианист, с дължина n. Съставете
рекурентно уравнение, което да намира |S(n)|, и напишете общото му решение.

Решение. Лесно се вижда, че S(n) = {A#, C#, D#, F#, G#} и |S(1)| = 5.
Разглеждаме S(n), когато n > 1. Разбиваме S(n) по последния натиснат клавиш:

• Нека този клавиш е бял. Броят на възможностите за последната нота са 7. Ясно е, че останалите
ноти можем да ги изберем по |S(n− 1)| начина.

• Нека този клавиш е черен. Броят на възможностите за последната нота са 5. Остатъкът от мелодията
трябва да бъде с дължина n − 1 и броят на натиснатите черни клавиши да бъде четен. Можем да
получим броя на тези мелодии като от множеството на всички възможни мелодии без ограничения
извадим тези, в които броят натиснати черни клавиши е нечетен. Тоест броят на тези мелодии е
12n−1 − |S(n− 1)|.

Тоест, когато n > 1, |S(n)| = 7|S(n− 1)|+ 5(12n−1 − |S(n− 1)|) = 2|S(n− 1)|+ 5
1212

n

Получаваме рекурентното уравнение:

|S(n)| =

{
5, за n = 1

2|S(n− 1)|+ 5
1212

n за n > 1

Характеристичното уравнение е:
x = 2

От нехомогенната част "идва"една 12-ка. Получаваме мултимножеството {2, 12}M . Тогава общото реше-
ние на рекурентното уравнение е:

|S(n)| = 2An + 12Bn

където A и B са някакви константи.

Задача 2. (30 т.) 25 човека са на парти. Измежду всеки трима има поне двама, които се познават.
Докажете, че съществува човек, който познава поне 12 човека. Познанството е симетрично, тоест ако А
познава Б, то Б познава А.

Решение: Задачата може да се моделира чрез граф G(V,E), където V е множеството от хората на партито
и ребро между два върха има т.с.т.к. двамата човека се познават. Трябва да докажем, че съществува връх
със степен поне 12.
Това, че измежду всеки трима има поне двама, които се познават, e еквивалентно на ∀v, u ∈ V : ((u, v) /∈
E −→ ∀w ∈ V \ {u, v} : (u,w) ∈ E ∨ (v, w) ∈ E). Казано с думи, ако двама човека не се познват, то всеки
друг човек от партито ще познава поне един от двамата.
Взимаме u, v ∈ V такива, че (u, v) /∈ E. Ако такива върхове не съществуват, то графът е пълен и от това
директно следва исканото. Щом (u, v) /∈ E, то ∀w ∈ V \ {u, v} : (u,w) ∈ E ∨ (v, w) ∈ E. Тъй като |V | = 25

по условие, то |V \ {u, v}| = 23. Съгласно принципа на Дирихле поне един от двата върха u или v ще има
степен поне ⌈232 ⌉ = 12.
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Задача 3. (50 т.) Да се докаже, че:
а) 10т. Всеки най-дълъг път в дърво има листо за начало и край.
б) 10т. В дърво с n върха съществува антиклика с големина поне n

2 .
в) 15т. За всеки граф G(V, E) с |V | = n и |E| = n + k, където k ∈ N, съществуват поне k + 1 различни
цикъла в G.
г) 15т. За граф G, ако ∆(G) е най-голямата степен на връх в G, то χ(G) ≤ ∆(G) + 1.

Решение: a) Нека T е дърво и нека p = v0 . . . vk, k ∈ N+ е най-дълъг път в T . Всички съседи на v0 са
част от p, защото иначе щяхме да получим по-дълъг път от най-дългия път в T . Ако допуснем, че v0
има повече от един съсед, то ∃i ∈ {2, . . . , k} : (v0, vi) ∈ E. Но тогава v0v1 . . . viv0 е цикъл в T , което е
противоречие с това, че T е дърво. Получихме, че d(v0) = 1. Абсолютно аналогично, съседите на vk са
част от p и ако vk имаше повече от един съсед, то пак щяхме да получим цикъл в T . Тогава и d(vk) = 1.

б) Нека T е дърво с n върха. В T няма нечетен цикъл, защото по дефиниця T е ацикличен. Съгласно
изучаваното от лекции T е двуделен, от което съществува разбиване на множеството на върховете {X,Y }
такова, че няма ребро, на което двата му краища да са в X или в Y . От това следва, че както X, така и
Y , са антиклики в T . Съгласно принципа на Дирихле, тъй като |X| + |Y | = n, едно от множествата ще
има мощност поне n

2 .

в) Нека вземем покриваща гора T на G, като вземем покриващо дърво от всяка свързана компонента на
G. Нека броят на свързаните компоненти е p. Нека за всяко i ∈ {1, . . . , p} ni е броят на върховете в i-тата
свързана компонента. Тъй като от всяка свързана компонента взимаме покриващо дърво, то от i-тата
компонента ще “дойдат“ ni − 1 ребра в T . Тоест в T има

∑p
i=1 (ni − 1) = n− p ребра.

Разглеждаме произволно ребро e от G, което не е в T . Нека реброто e е част от i-тата свързана компонента
на G. Щом добавим e към покриващото дърво на i-тата компонента, което сме взели в T , то съгласно
изучаваното от лекции ще получим уницикличен граф. Нещо повече - в този цикъл задължително ще
участва реброто e.
Броят на ребрата, които са от G, но не са от T , е n+k− (n− p) = k+ p. За всяко такова ребро доказахме,
че съществува цикъл, в който това ребро участва. Тоест получихме k + p различни цикъла. Ясно е, че в
G има поне 1 свързана компонента, тоест има поне k + 1 различни цикъла.

г) Ще докажем, че можем да оцветим върховете на G с ∆(G)+1 цвята, като направим индукция по броя
на върховете в G.
База: Нека n = 1, тоест G е тривиалният граф. ∆(G) = 0 и очевидно можем да оцветим върховете на G

в един цвят.
Индуктивно предположение: Нека за някое n ∈ N+ е изпълнено, че ако граф G има n върха, то
съществува оцветяване на върховете на G с ∆(G) + 1 цвята.
Индуктивна стъпка: Нека G(V,E) е граф с n+1 върха. Нека вземем произволен връх v ∈ V . Графът
G − v е с n върха и от И.П. следва, че за G − v съществува оцветяване с ∆(G − v) + 1 цвята. Лесно
се вижда, че ∆(G) ≥ ∆(G − v), тъй като премахването на връх не води до увеличаване на степен на
връх. Щом съществува оцветяване с ∆(G − v) + 1 цвята, то съществува и оцветяване с ∆(G) + 1 цвята.
Нека f : V ′ −→ C, e такова оцветяване, като V ′ = V \ {v} и C = {1, . . . ,∆(G − v) + 1}. Ясно е, че
d(v) ≤ ∆(G), което влече, че съществува j ∈ C такова, че за всички съседи u на v е изпълнено j ̸= f(u).
Нека g : V −→ C, където за x ∈ V

g(x) =

{
f(x), за x ∈ V ′

j за x = v

За всяко ребро (x, y) от G има два случая - то да е част и от G − v или (x, y) да е инцидентно с v. В
първия случай имаме, че g(x) = f(x), g(y) = f(y) и това, че f е оцветяване в G− v влече g(x) ̸= g(y). Във
втория случай или x = v или y = v, като нека БОО x = v. y е съсед на v, тоест f(y) ̸= j. y е част от G− v

и g(y) = f(y), а пък g(x) = j, тъй като x = v. Тогава и g(x) ̸= g(y).
Получихме, че g е оцветяване на G с ∆(G) + 1 цвята.

Задача 4. (30т.) Докажете, че ако граф G(V,E) е двуделен и δ(G) ≥ k за k ∈ N, k ≥ 2, то в G съществува
цикъл с дължина поне 2k, където δ(G) е най-малката степен на връх от G.
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Решение: Нека p = v0 . . . vq, q ∈ N, е най-дълъг път от в G. От доказателството на 3a) знаем, че всички
съседи на v0 са част от p. Нека тези съседи са u1, . . . , ud, d ∈ N, като нека БОО u1, . . . , ud са подредени
по срещането им в p. Тоест v1 = u1 и p = v0u1 . . . u2 . . . ud . . . vq.
Тъй като G е двуделен, то u1, . . . , ud са от един дял, което влече, че няма как ui и ui+1 да са съседи за
всяко i ∈ {1, . . . d − 1}. Тоест за всяко i ∈ {2, . . . , d}, ако u′i, е такъв връх, че u′i е съсед на ui в p и u′i е
преди ui спрямо v0, то u′i ̸= ui−1. Получаваме следния вид на p: p = v0u1 . . . u

′
2u2 . . . u

′
dud . . . vq. Нека c е

цикълът, получен след взимането на подпътя на p от v0 до ud и долепянето на v0 до него. Дължината на
този цикъл е поне 2d, а пък d ≥ δ(G) = k. Тоест получихме цикъл с дължина поне 2k.
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